
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

December 2017

Competitive Power Down Methods in Green Computing Competitive Power Down Methods in Green Computing

James Andro-Vasko
University of Nevada, Las Vegas, vaskodagamer@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Andro-Vasko, James, "Competitive Power Down Methods in Green Computing" (2017). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 3114.
https://digitalscholarship.unlv.edu/thesesdissertations/3114

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons
license in the record and/or on the work itself.

This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3114?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

COMPETITIVE POWER DOWN METHODS IN GREEN COMPUTING

by

James Andro-Vasko

Master of Science (M.Sc.)

University of Nevada, Las Vegas

2011

Bachelor of Science (B.Sc.)

University of Nevada, Las Vegas

2009

A dissertation submitted in partial fulfillment of

the requirements for the

Doctor of Philosophy Degree - Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2017

www.manaraa.com

c© James Andro-Vasko, 2017

All Rights Reserved

www.manaraa.com

ii

Dissertation Approval

The Graduate College

The University of Nevada, Las Vegas

November 16, 2017

This dissertation prepared by

James Andro-Vasko

entitled

Competitive Power Down Methods in Green Computing

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy Degree - Computer Science

Department of Computer Science

Wolfgang Bein, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Lawrence Larmore, Ph.D.
Examination Committee Member

Ajoy Datta, Ph.D.
Examination Committee Member

Andreas Stefik, Ph.D.
Examination Committee Member

Robert Boehm, Ph.D.
Graduate College Faculty Representative

www.manaraa.com

Abstract

For the power-down problem one considers a device which has states OFF, ON, and a number of

intermediate states. The state of the device can be switched at any time. In the OFF state the device

consumes zero energy and in the ON state it works at its full power consumption. The intermediate

states consume only some fraction of energy proportional to the usage time but switching back to the

ON state has has different constant setup cost depending on the current state. Requests for service

(i.e. for when the device has to be in the ON state) are not known in advance, thus power-down

problems are studied in the framework of online algorithms, where a system has to react without

knowledge of future requests. Online algorithms are analyzed in terms of competitiveness, a measure

of performance that compares the solution obtained online with the optimal online solution for the

same problem, where the lowest possible competitiveness is best.

Power-down mechanisms are widely used to save energy and were one of the first problems to

be studied in green computing. They can be used to optimize energy usage in cloud computing, or

for scheduling energy supply in the smart grid. However, many approaches are simplistic, and do

not work well in practice nor do they have a good theoretical underpinning. In fact, it is surprising

that only very few algorithmic techniques exist. This thesis widens the algorithmic base for such

problems in a number of ways. We study systems with few states which are especially relevant in real

wold applications. We give exact ratios for systems with three and five states. We then introduce

a new technique, called decrease and reset, where the algorithm automatically attunes itself to the

frequency of requests, and gives a better performance for real world inputs than currently existing

iii

www.manaraa.com

algorithms. We further refine this approach by a budget-based methods which keeps a tally of gains

and losses as requests are processed. We also analyze systems with infinite states and devise several

strategies to transition between states. The thesis gives results both in terms of theoretical analysis

as well as a result of extensive simulation.

www.manaraa.com

Acknowledgements

I would like to thank my advisor, Dr. Wolfgang Bein with all of his mentorship throughout this

entire process. His dedication, guidance, and friendly demeanor inspired me to strive ahead in my

research and also inspired me to grow as a person in the profession of research and academia. His

willingness to always give me advice in various stages of my research and my academic career will

not be forgotten and I will always be grateful. He would give me guidance on how to improve my

skills in my profession as a researcher and teaching. We traveled to Tokyo, Japan twice and both

times he took me under his wing, and made a stressful situation of traveling to a foreign country

(since it was my first time traveling to a foreign country) into a memorable experience of a lifetime.

I am truly grateful that he was my advisor. He was more than just an mentor to me, he was always

a good friend.

I also acknowledge support under National Science Foundation Grant IIA 142784. The grant

allowed me to visit the University of Electro-Communications to work on this topic. While in Japan,

I had the opportunity to meet Dr. Hiro Ito and Dr. Jun Kawahara who worked and aided me in

my work, which I am very thankful. I would also like to thank Dr. Lawrence Larmore. While

being his graduate teaching assistant for several semesters, he opened my mind and allowed to to

think like an academic professional which helped me in my work and with my teaching. I would

also like to express my gratitude to Dr. Laxmi Gewali and Dr. Ajoy Datta for giving me the

opportunity to work here at this university which further increased my development in the academic

profession and giving me a chance to proof myself when not many did. The entire staff here created

v

www.manaraa.com

an environment for me which felt like a second home with a second family, and my mentality was

never ”I have to go to work today”, but rather ”I get to go to work today.” I would like to thank my

entire committee, Dr. Wolfgang Bein, Dr. Robert Boehm, Dr. Ajoy Datta, Dr. Lawrence Larmore,

and Dr. Andreas Stefik for their discussions and advice throughout the process. Also discussions

with Rüdiger Reischuk of Universität Lübeck during his sabbatical visit are acknowledged.

I would like to thank my mother and father for creating an atmosphere at home which allowed

me to focus on my goals. My mother worked two jobs to provide for me and my father was always

there for me whenever things did not always look positive. Lastly, I would like to thank everyone

who believed in me throughout this long journey.

James Andro-Vasko

University of Nevada, Las Vegas

December 2017

www.manaraa.com

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Power Down Problem . 1

1.2 Online Algorithms . 1

1.3 Prior Work in Green Computing and Applications of Green Computing 3

1.4 Contributions . 4

2 Two State Problem 6

3 Multiple State Problem 11

4 Three State Problem 17

5 The Five State Problem 27

5.1 Preliminaries . 27

5.2 The Five State Power Down Algorithm . 29

5.3 Comparing three state machine to five state machine 32

5.4 Comparing three state machine to five state machine where we increase its competitive

ratio . 36

6 Continuous State Problem 41

vii

www.manaraa.com

7 The Decrease and Reset Algorithm 54

7.1 Details . 54

7.2 Budget Based Taper Down Algorithm for Two State Machine 58

8 Three State Decrease and Reset Algorithm 60

9 Three State Problem with Reduced Delay Times 65

9.1 Analysis for Arbitrary Reduced Delay Times . 65

9.2 Gains Obtained for Various c1 Values . 67

9.3 Using a Budget to Compute Optimal Wait Times . 70

9.4 Experimental Results . 75

10 Comparison with DRA and Budget Based Algorithm with OWCR 77

10.1 Slack Systems . 77

10.2 Comparison of DRA with Budget Based Algorithm with Slack Systems 83

10.3 Busy Systems . 92

10.4 Comparison of DRA with Budget Based Algorithm with Busy Systems 97

11 Comparison of 3 State Taper Down Algorithms 106

11.1 Slack Systems . 106

11.2 Busy Systems . 111

12 Conclusion 115

12.1 Summary . 115

12.2 Future Work . 117

Bibliography 119

Curriculum Vitae 123

www.manaraa.com

List of Tables

4.1 Three state costs . 17

4.2 Experimental results for a given λ value . 25

4.3 Experimental results for λ values close to 1 . 26

5.1 Execution of algorithm 1 with sample input . 30

5.2 Optimal competitive ratio within θ = 0.01 for various a and d costs 32

8.1 Three State Taper Down Values for a = 0.6 and d = 0.4, CR = 1.8 63

8.2 Three State Taper Down Values for a = 0.1 and d = 0.9, CR = 1.951 63

8.3 Three State Taper Down Values for a = 0.9 and d = 0.1, CR = 1.911 64

9.1 Adjusted times . 68

9.2 Input set 1 . 75

9.3 Input set 2 . 76

9.4 Input set 3 . 76

10.1 Costs for d = 2 . 78

10.2 Costs for d = 4 . 79

10.3 Costs for d = 6 . 80

10.4 Costs for d = 8 . 81

10.5 Comparison of DRA and Budget Based Algorithm with OWCR with slack system . 82

10.6 Costs for d = 0.25 . 93

10.7 Costs for d = 0.5 . 94

10.8 Costs for d = 2/3 . 95

10.9 Costs for d = 0.8 . 96

10.10Comparison of DRA and Budget Based Algorithm with OWCR with busy system . 96

11.1 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 2 107

ix

www.manaraa.com

11.2 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 4 108

11.3 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 6 109

11.4 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 8 110

11.5 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 0.25 111

11.6 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 0.5 112

11.7 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 2/3 113

11.8 Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 0.8 114

www.manaraa.com

List of Figures

2.1 Cost of always OFF approach . 7

2.2 Cost of always ON approach . 8

2.3 Competitive ratio for various delay times . 9

3.1 Cost incurred by each state Si . 11

3.2 Optimal cost for multiple states . 11

3.3 Cost of LEA . 13

3.4 Competitive ratio of LEA . 13

4.1 Optimal cost when state INT has costs a = 0.6 d = 0.4 18

4.2 Optimal cost when state INT has costs a = 0.5 d = 0.4 18

4.3 Optimal cost when state INT has costs a = 0.4 d = 0.4 19

4.4 Optimal cost when state INT has costs a = 0.3 d = 0.3 19

4.5 ON, INT, and OFF state curves when a+ d > 1 . 19

4.6 ON, INT, and OFF state curves when a+ d = 1 . 19

4.7 Competitive ratio CR1 < CR2 . 22

4.8 Competitive ratio CR1 > CR2 . 22

4.9 Competitive ratio CR1 = CR2 . 22

4.10 Competitive ratio for various d values . 24

4.11 Optimal competitive ratios for given λ values . 25

5.1 Online and offline costs for example 5 state system 31

5.2 Competitive Ratio For Various Standby Times . 31

5.3 Costs for three state and five state machines for CR = 1.8 and CR = 1.701 33

5.4 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.701 33

5.5 Costs for three state and five state machines for CR = 1.8 and CR = 1.739 33

5.6 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.739 33

xi

www.manaraa.com

5.7 Costs for three state and five state machines for CR = 1.8 and CR = 1.775 34

5.8 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.775 34

5.9 Costs for three state and five state machines for CR = 1.8 and CR = 1.765 35

5.10 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.765 35

5.11 Costs for three state and five state machines for CR = 1.8 and CR = 1.7265 35

5.12 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.7265 35

5.13 Costs for three state and five state machines for CR = 1.8 and CR = 1.724 36

5.14 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.724 36

5.15 Costs for three state and five state machines for CR = 1.8 and CR = 1.701 raised to 1.8 37

5.16 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.701

raised to 1.8 . 37

5.17 Costs for three state and five state machines for CR = 1.8 and CR = 1.739 raised to 1.8 38

5.18 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.739

raised to 1.8 . 38

5.19 Costs for three state and five state machines for CR = 1.8 and CR = 1.775 raised to 1.8 38

5.20 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.775

raised to 1.8 . 38

5.21 Costs for three state and five state machines for CR = 1.8 and CR = 1.765 raised to 1.8 39

5.22 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.765

raised to 1.8 . 39

5.23 Costs for three state and five state machines for CR = 1.8 and CR = 1.7265 raised

to 1.8 . 39

5.24 Competitive ratio for three state and five state machine for CR = 1.8 and CR =

1.7265 raised to 1.8 . 39

5.25 Costs for three state and five state machines for CR = 1.8 and CR = 1.724 raised to 1.8 40

5.26 Competitive ratio for three state and five state machine for CR = 1.8 and CR = 1.724

raised to 1.8 . 40

6.1 a(r) and d(r) curves . 41

6.2 Cost of OPT and ONLINE . 42

6.3 Competitive ratio . 42

6.4 OPT and Online strategies for t = 0.312, z = 0.1 . 43

6.5 OPT and Online strategies for t = 0.412, z = 0.1 . 43

6.6 OPT and Online strategies for t = 0.512, z = 0.1 . 43

6.7 OPT and Online strategies for t = 0.612, z = 0.1 . 43

www.manaraa.com

6.8 OPT and Online strategies for t = 0.712, z = 0.1 . 43

6.9 Cost of OPT and Online for t = 0.312, z = 0.1 . 44

6.10 Cost of OPT and Online for t = 0.412, z = 0.1 . 44

6.11 Cost of OPT and Online for t = 0.512, z = 0.1 . 44

6.12 Cost of OPT and Online for t = 0.612, z = 0.1 . 44

6.13 Cost of OPT and Online for t = 0.712, z = 0.1 . 45

6.14 Competitive ratio t = 0.312, z = 0.1 . 45

6.15 Competitive ratio t = 0.412, z = 0.1 . 45

6.16 Competitive ratio t = 0.512, z = 0.1 . 45

6.17 Competitive ratio t = 0.612, z = 0.1 . 45

6.18 Competitive ratio t = 0.712, z = 0.1 . 46

6.19 OPT and Online strategies for t = 0.312, z = 0.2 . 46

6.20 OPT and Online strategies for t = 0.312, z = 0.3 . 46

6.21 OPT and Online strategies for t = 0.312, z = 0.4 . 47

6.22 OPT and Online strategies for t = 0.312, z = 0.9 . 47

6.23 OPT and Online strategies for t = 0.312, z = 1.1 . 47

6.24 Cost of OPT and Online for t = 0.312, z = 0.2 . 48

6.25 Cost of OPT and Online for t = 0.312, z = 0.3 . 48

6.26 Cost of OPT and Online for t = 0.312, z = 0.4 . 48

6.27 Cost of OPT and Online for t = 0.312, z = 0.9 . 48

6.28 Cost of OPT and Online for t = 0.312, z = 1.1 . 48

6.29 Competitive ratio t = 0.312, z = 0.2 . 49

6.30 Competitive ratio t = 0.312, z = 0.3 . 49

6.31 Competitive ratio t = 0.312, z = 0.4 . 49

6.32 Competitive ratio t = 0.312, z = 0.9 . 49

6.33 Competitive ratio t = 0.312, z = 1.1 . 49

6.34 Strategy Linear Function . 50

6.35 Strategy Strategyln(200, r) . 50

6.36 Strategy Strategyln(106, r) . 50

6.37 Strategy Strategye(1, r) . 50

6.38 Strategy Strategye(5, r) . 50

6.39 Cost Linear Function . 51

6.40 Cost Strategyln(200, r) . 51

6.41 Cost Strategyln(106, r) . 51

www.manaraa.com

6.42 Cost Strategye(1, r) . 51

6.43 Cost Strategye(5, r) . 51

6.44 Competitive Ratio Linear Function . 52

6.45 Competitive Ratio Strategyln(200, r) . 52

6.46 Competitive Ratio Strategyln(106, r) . 52

6.47 Competitive Ratio Strategye(1, r) . 52

6.48 Competitive Ratio Strategye(5, r) . 52

9.1 Competitive ratios when the wait times are decreased to (1− c)x1 and (1− c)x2 . . 66

9.2 Competitive ratios when the wait times are decreased to (1− c)x1 and (1− 1.3c)x2 . 66

9.3 Competitive ratios when the wait times are decreased to (1− c)x1 and (1− 1.7c)x2 . 66

9.4 Increase in c2 with respect to c1, a = 0.45 and d = 0.3 67

9.5 Gain for c1 = 0.05 . 68

9.6 Gain for c1 = 0.10 . 68

9.7 Gain for c1 = 0.25 . 68

9.8 Gain for c1 = 0.50 . 68

9.9 Gains for the adjusted wait times x1 and x2 . 69

9.10 Taper down values with

respect to b, a = 0.45, d = 0.3, ε = 0.001 . 74

9.11 Taper down values with

respect to b, a = 0.6, d = 0.4, ε = 0.001 . 74

9.12 Taper down values with

respect to b, a = 0.45, d = 0.3, ε = 0.1 . 74

9.13 Taper down values with

respect to b, a = 0.45, d = 0.3, ε = 0.5 . 74

10.1 Slack degree d = 2, input set 1 . 78

10.2 Slack degree d = 2, input set 2 . 78

10.3 Slack degree d = 2, input set 3 . 78

10.4 Slack degree d = 2, input set 4 . 78

10.5 Slack degree d = 4, input set 1 . 79

10.6 Slack degree d = 4, input set 2 . 79

10.7 Slack degree d = 4, input set 3 . 79

10.8 Slack degree d = 4, input set 4 . 79

10.9 Slack degree d = 6, input set 1 . 80

www.manaraa.com

10.10Slack degree d = 6, input set 2 . 80

10.11Slack degree d = 6, input set 3 . 80

10.12Slack degree d = 6, input set 4 . 80

10.13Slack degree d = 8, input set 1 . 81

10.14Slack degree d = 8, input set 2 . 81

10.15Slack degree d = 8, input set 3 . 81

10.16Slack degree d = 8, input set 4 . 81

10.17Costs when CR set to 2.001, slack degree 2, from first input set 83

10.18Costs when CR set to 2.001, slack degree 2, from second input set 83

10.19Costs when CR set to 2.001, slack degree 2, from third input set 84

10.20Costs when CR set to 2.001, slack degree 2, from third input set 84

10.21Wait times when CR set to 2.001, slack degree 2, from first input set 84

10.22Wait times when CR set to 2.001, slack degree 2, from second input set 84

10.23Wait times when CR set to 2.001, slack degree 2, from third input set 85

10.24Wait times when CR set to 2.001, slack degree 2, from third input set 85

10.25Costs when CR set to 2.1, slack degree 2, from first input set 86

10.26Costs when CR set to 2.1, slack degree 2, from second input set 86

10.27Costs when CR set to 2.1, slack degree 2, from third input set 86

10.28Costs when CR set to 2.1, slack degree 2, from third input set 86

10.29Wait times when CR set to 2.1, slack degree 2, from first input set 87

10.30Wait times when CR set to 2.1, slack degree 2, from second input set 87

10.31Wait times when CR set to 2.1, slack degree 2, from third input set 87

10.32Wait times when CR set to 2.1, slack degree 2, from third input set 87

10.33Costs when CR set to 2.001, slack degree 8, from first input set 88

10.34Costs when CR set to 2.001, slack degree 8, from second input set 88

10.35Costs when CR set to 2.001, slack degree 8, from third input set 88

10.36Costs when CR set to 2.001, slack degree 8, from third input set 88

10.37Wait times when CR set to 2.001, slack degree 8, from first input set 89

10.38Wait times when CR set to 2.001, slack degree 8, from second input set 89

10.39Wait times when CR set to 2.001, slack degree 8, from third input set 89

10.40Wait times when CR set to 2.001, slack degree 8, from third input set 89

10.41Costs when CR set to 2.1, slack degree 8, from first input set 90

10.42Costs when CR set to 2.1, slack degree 8, from second input set 90

10.43Costs when CR set to 2.1, slack degree 8, from third input set 90

www.manaraa.com

10.44Costs when CR set to 2.1, slack degree 8, from third input set 90

10.45Wait times when CR set to 2.1, slack degree 8, from first input set 91

10.46Wait times when CR set to 2.1, slack degree 8, from second input set 91

10.47Wait times when CR set to 2.1, slack degree 8, from third input set 91

10.48Wait times when CR set to 2.1, slack degree 8, from third input set 91

10.49Slack degree d = 0.25, input set 1 . 92

10.50Slack degree d = 0.25, input set 2 . 92

10.51Slack degree d = 0.25, input set 3 . 92

10.52Slack degree d = 0.25, input set 4 . 92

10.53Slack degree d = 0.5, input set 1 . 93

10.54Slack degree d = 0.5, input set 2 . 93

10.55Slack degree d = 0.5, input set 3 . 93

10.56Slack degree d = 0.5, input set 4 . 93

10.57Slack degree d = 2/3, input set 1 . 94

10.58Slack degree d = 2/3, input set 2 . 94

10.59Slack degree d = 2/3, input set 3 . 94

10.60Slack degree d = 2/3, input set 4 . 94

10.61Slack degree d = 0.8, input set 1 . 95

10.62Slack degree d = 0.8, input set 2 . 95

10.63Slack degree d = 0.8, input set 3 . 95

10.64Slack degree d = 0.8, input set 4 . 95

10.65Costs when CR set to 2.001, slack degree 0.25, from first input set 97

10.66Costs when CR set to 2.001, slack degree 0.25, from second input set 97

10.67Costs when CR set to 2.001, slack degree 0.25, from third input set 98

10.68Costs when CR set to 2.001, slack degree 0.25, from forth input set 98

10.69Wait times when CR set to 2.001, slack degree 0.25, from first input set 98

10.70Wait times when CR set to 2.001, slack degree 0.25, from second input set 98

10.71Wait times when CR set to 2.001, slack degree 0.25, from third input set 99

10.72Wait times when CR set to 2.001, slack degree 0.25, from forth input set 99

10.73Costs when CR set to 2.1, slack degree 0.25, from first input set 99

10.74Costs when CR set to 2.1, slack degree 0.25, from second input set 99

10.75Costs when CR set to 2.1, slack degree 0.25, from third input set 100

10.76Costs when CR set to 2.1, slack degree 0.25, from forth input set 100

10.77Wait times when CR set to 2.1, slack degree 0.25, from first input set 100

www.manaraa.com

10.78Wait times when CR set to 2.1, slack degree 0.25, from second input set 100

10.79Wait times when CR set to 2.1, slack degree 0.25, from third input set 101

10.80Wait times when CR set to 2.1, slack degree 0.25, from forth input set 101

10.81Costs when CR set to 2.1, slack degree 0.8, from first input set 101

10.82Costs when CR set to 2.1, slack degree 0.8, from second input set 101

10.83Costs when CR set to 2.1, slack degree 0.8, from third input set 102

10.84Costs when CR set to 2.1, slack degree 0.8, from forth input set 102

10.85Wait times when CR set to 2.1, slack degree 0.8, from first input set 102

10.86Wait times when CR set to 2.1, slack degree 0.8, from second input set 102

10.87Wait times when CR set to 2.1, slack degree 0.8, from third input set 103

10.88Wait times when CR set to 2.1, slack degree 0.8, from forth input set 103

10.89Costs when CR set to 2.001, slack degree 0.8, from first input set 103

10.90Costs when CR set to 2.001, slack degree 0.8, from second input set 103

10.91Costs when CR set to 2.001, slack degree 0.8, from third input set 104

10.92Costs when CR set to 2.001, slack degree 0.8, from forth input set 104

10.93Wait times when CR set to 2.001, slack degree 0.8, from first input set 104

10.94Wait times when CR set to 2.001, slack degree 0.8, from second input set 104

10.95Wait times when CR set to 2.001, slack degree 0.8, from third input set 105

10.96Wait times when CR set to 2.001, slack degree 0.8, from forth input set 105

www.manaraa.com

Chapter 1

Introduction

1.1 Power Down Problem

Consider a machine with an ON state, an OFF state, and possibly a set of intermediate power states.

Each state has an idle cost, or unit cost, which is the cost to remain idle in that particular state, and

each state also has a power up cost which is the cost to switch to the ON state. The machine must

be in the ON state in order to process a request so when a request arrives, the machine is either in

the ON state and will process the request or it needs to power up to the ON state, if the machine

was in any other state. The machine can switch to a lower power state at any time but will incur a

power up cost a request arrives after the machine switched to the lower power state.

Given the set of requests, given their release times and deadlines, the goal is to minimize the

power consumption needed to process all of the requests. It is quite trivial to compute the optimal

power usage given a set of requests, we would determine the idle time between two requests, and

then we would choose the state that minimizes the idle and power up cost in the duration. However,

for the power down problem, we will consider the online model, where we do not know when the

idle period will end and we must decide which state to use at the current point in time.

1.2 Online Algorithms

When we develop an online algorithm, we develop an algorithm that makes its decisions without

knowing any of the future input. Our goal is to obtain an online algorithm that minimizes its maximal

cost for all inputs. We use the term competitive ratio which is defined to be CostA(σ) ≤ c·Costopt(σ)

where CostA(σ) is the cost of an online algorithm with input sequence σ and Costopt(σ) is the cost

of the optimal offline algorithm for input sequence σ, if the inequality holds for any input sequence,

1

www.manaraa.com

then we say that the online algorithm is c-competitive which are discussed in [5, 21, 31, 47]. Other

areas of online algorithms that have been researched is the online paging problem [19, 44, 49, 50],

mostly the LRU in the online setting has been studied [15, 18, 27, 46]. The k server problem has

been in [16, 23] has been studied where a a request arrives in a grid and servers are moved to the

location. There has also been work done in online binpacking [40]. The input sequence is given to the

online and offline algorithm by an adversary such that the competitive ratio is maximized [16, 21].

For a given online problem, we have a set of online algorithms Ai, the offline algorithm OPT , and

the input σi for each algorithm Ai and we choose Ai such that has the smallest competitive ratio

for all of the online algorithms and this algorithm is the best algorithm.

We use the online model for the power down problem because in real world applications, the

input sequence will not always be known. Queuing theory can also be applied to the online power

down problem and also assumptions can be made in practice about when the machine will be more

active and when it will be less active. For example with power plants and power grids, usually at

night the demand for power is lower than during the day, and during different seasons of the year,

the power demand changes and scheduling whether to use a full scale power plant or a power grid

can be trivially done. Also, when a new item appears on a streaming service of any kind, it can be

assumed the severs will take a big hit in its work load so it can also easily be determined that the

machine will be very busy and power down strategies do not play such a significant role. However,

if it cannot be predicted how busy or idle the machine will be is where online competitive analysis

does become important. The competitive ratio for an online algorithm acts as a guarantee that

insures that we can not do any worse than the upper bound of the algorithm. Suppose we have an

algorithm A that has better runtime, or smaller cost, than algorithm B, but in the worst case A

performs much worse than B, then the better choice would be to use algorithm B for our problem.

Usually we choose the algorithm with the lower competitive ratio because we want a more

favorable result even in the worst possible case, unless the algorithm with a worse competitive ratio

is larger only by an arbitrarily small amount and performs much better in the average and in the

best case. In this case, we would have to do careful and extensive analysis by applying the algorithms

against all types of input in relatively large quantity of inputs for each test, in order to make an

assumption that the algorithm with a slightly less competitive ratio has better results in the best and

average case. Even in this scenario, we still want to choose the algorithm with the best competitive

ratio or has a competitive ratio that is only slightly worse than the algorithm with the best known

competitive ratio.

2

www.manaraa.com

1.3 Prior Work in Green Computing and Applications of Green Com-

puting

In 2013, 91 billion kilowatt-hours of energy has been used up by U.S. data centers, so research in

the area of green computing has a significant role [24]. In fact according to Google, energy costs

are often larger than hardware cost and ways to minimize energy consumption are crucial [13]. In

green computing, there has been a great deal of work done in the area of speed scaling [29, 42, 51].

In [11, 12], a new lower and upper bound is introduced which are eα−1/α and 2eα+1, where α is

some constant used to compute the power used when the CPU is scaled up or down to complete a

set of jobs, which is an improvement from the previous competitive ratio of 27 to 6.7 when α = 3.

In [28], the SOA algorithm is introduced for the speed scaling problem which is 4-competitive for

throughput and (αα+α24α+2)-competitive. Competitive snooping [38] where each processor keeps

track of which blocks of data to retain to drop to have minimal communication on the system bus

which reduces energy cost. Other research has been done with power down problems over a network

to reduce energy cost of idling server machines while maintaining an effective network [3, 4, 35, 45].

Some applications of green computing is used on power grids [20, 26] which are small scale power

plants that power on when there is low demand and when power grids are active, the larger scale

power plants can power down. In multiprocessors or thread environments, processes at times have

to wait to enter a critical section in which they will either be put to sleep or they will spinlock [37]

in which spinlocking costs power and going to sleep uses no power but then there is a power up cost,

directly related to the power down problem. Similar issues occur in network between sending bursts

of packets whether to keep the connection open or closed [36, 41]. With cache coherency, there

are times when the data and cache are updated and there are strategies as to when to update or

invalidate that data in main memory [7, 25], performing several updates separately can be costly, so

determining the right moment to update to minimize cost can be related to the power down problem

as to when to power down after being idle for a given amount of time. Other work that has been

done is on the online capital investment problem which handles special case for power down problem

in which the power up costs are equal for all states 4 + 2
√

2 [10]. Damaschke et al [22] improves

this special case to 4-competitive. We will focus our attention on the online power down problems

in which randomization will not be applied.

The power down problem is relate-able to speed scaling because when a machine is running a

processes it can adjust the speed of the processor which acts as some power state. Our focus will

be on the power down problems in the online setting, where we have a machine with several power

states, and we transition to lower power states as the machine is idling to save power. Some previous

3

www.manaraa.com

work in the area of power down has been the 2 state power down problem and the discrete multi

state power down problems [6, 34, 47] in which there exists an algorithm that yields the optimal

competitive ratio which takes O(n2 log n log(1/ε)) time where n is the number of states and ε is an

approximation value [9]. There also has been work done using randomized algorithms in the power

down problems which yielded a competitive ratio of e/e− 1 [32, 33, 39].

1.4 Contributions

In this paper, we do extensive work on the power down problem with our main focus on power state

machines with few states. In practice, most machines have up to 3 or 5 power states, and this allows

us to concentrate on this smaller problem which also simplifies the strategy in devising a schedule

that yields the optimal online cost. In Augustine et al.[9], an algorithm is introduced that obtains

the best switch times to get the minimal competitive ratio within an ε approximation, for an n state

machine. Our approach on the 3 state machine, introduced in chapter 4, we have a mechanism of

obtaining the exact minimal competitive ratio by computing the switch times that yield the best

competitive ratio in constant runtime.

For the 5 state machine, in chapter 5, we show our approach to obtain the switch times to

obtain the minimal competitive ratio within an ε, which is also a simpler approach from the known

algorithm for n state machine algorithm, this algorithm was inspired using a similar technique of

using a binary search on the range of possible competitive ratios as done in [9], however, once again

we compute the switch times in constant time without applying any other search, which simplifies

and speeds up the problem. We then discuss the continuous state problem, in chapter 6, where we

transition to lower power states using a continuous curve for the unit and power up costs, where we

do not have discrete time units for transitions, we use another curve that dictates how we switch to

lower cost states throughout the idle period. We can imagine the continuous power down problem

to be an analog throttle control where we can adjust the dial rapidly or slowly. We show strategies

that show how rapidly we switch to a lower power state and summarize the costs and competitive

ratios of using a set of strategies.

After we set the foundation power state machines for various amounts of states, we analyze

tapering down strategies. In chapter 7, we introduce the decrease and reset algorithm (DRA) for

a two state system, which adjusts the delay times according to previous delay times we had before

requests. The concept of any tapering based approach is that we decrease the wait times that the

machine stays in on state while idling. In chapter 2, we show a proof that states that there is a single

instance that the two state machine powers down to obtain the minimal competitive ratio. When

we apply this tapering approach, since the idle time is decreased, the competitive ratio increases by

4

www.manaraa.com

some small arbitrary amount. In a competitive analysis sense, tapering down leads to an algorithm

that yields are larger cost, however in practice, if we have a machine that spends a great deal of

time idling and powering down between requests, we can save energy if we decide to power down to

the off state earlier than we normally would have. However, if the system becomes active, then we

reset the idle time to a larger amount to decrease the energy used if we power down too soon. Also,

in chapter 7, we introduce a budget based tapering down approach that uses some variable which

will denote the energy saved, which we call a budget, to adjust the wait time between requests. This

approach is similar conceptually to the DRA in terms of how the machine tapers down, but the

adjusted wait times in the budget based approach attempts to calculate the switch time to be more

cost efficient in the worst case than the DRA. We compare the results of these two approaches in

chapter 10 for a set of input, which are a set of requests, to show the costs of the two algorithms

when requests are arriving soon after one another or when the requests arrive distantly from each

other.

In chapter 8, we further analyze the decrease and reset algorithm and apply it to the three state

model from chapter 4, to attempt to reduce the wait time in the high power on state and the wait

time in the intermediate state. Similar to the two state DRA, when a request arrives after the

machine powers down, the idle time is decreased, however we witness an odd behavior that the on

state idle duration decreases and the idle time in the intermediate state remains unchanged between

requests that arrive distant from each other. The intermediate state idle duration starts decreasing

only when the on state duration is depleted to a wait time of 0, and the intermediate state tapers

down at a faster rate than when the on state is tapering down its wait time.

In chapter 9, we introduce a budget based technique as we did in chapter 7, but with three states.

The behavior differs from the three state DRA by the way the idle times taper down. In the budget

based model, the on state and the intermediate state wait time are tapering down simultaneously

because we apply the energy gained to compute a new wait time for both the on and the intermediate

states. In chapters 10 and 11 we compare the DRA with the budget based for two states and three

states with a set of various inputs which are generated randomly to further analyze the costs of the

two techniques against each other as well as with the optimal offline cost and online algorithm that

does not use any tapering which is the optimal online algorithm.

5

www.manaraa.com

Chapter 2

Two State Problem

We first consider systems with two states. The two state problem is a similar to a well known

problem: the ski-rental problem . We give a number of simple results which have been published

before, but which are implicit in the solutions to the ski-rental problem. There are two states ,ON

and OFF; in the ON state, there is a standby cost α and there is no cost to power up when a request

arrives (since we are already in the ON state). If the machine is in the OFF state when the request

arrives, it has to power up to the ON state in order to processes the request. There is a power up

cost β in the OFF state and there is no standby cost. The goal is to determine the time to switch

to the OFF state when the machine is idle, to minimize the power consumption of the machine in

the worst case. For all of the instances of the power down problems, we have an input sequence σ

which is a sequence of job requests for the machine.

σ = ((rs1, r
e
1), (rs2, r

e
2), (rs3, r

e
3), ..., (rsn, r

e
n))

Each pair (rsi , r
e
i) denotes the start and end times of job i respectively. It is clear that the length

of job i will be rei − rsi , which will simply be the difference of end time and start time for job i. The

machine uses power when processing a request and when the machine is idle, since our focus with

the power down problem is conserving energy when the machine is idle, we do not consider the cost

to process an actual request. Therefore we can collapse rsi and rei into a single time instance, σ can

be rewritten to:

σ = (r1, r2, r3, ..., rn)

So the issue is when to power down after any request in the sequence σ. A few obvious method-

ologies are: to always power down after each request or always remain in the ON state. A more

complex methodology is to wait for a duration in the ON state and eventually power down after

some time. In the always OFF strategy, may not always be a bad strategy if the machine is rarely

6

www.manaraa.com

used, if there is a long idle duration between requests. Once again, the adversary will maximize

the cost of this algorithm. The adversary will send the requests with arbitrarily small delay times,

which will incur an unnecessary power up cost after each request, since the power up cost outweighs

the idle cost between the requests. The cost of the online algorithm will be β for each request since

it has to power up each time, and the machine will never remain idle in the ON state so there will

be no standby cost incurred. The offline algorithm will once again have a nonexistent cost since it is

in ON state at the start of each request and since the machine must be in the ON state to process

the request, there is no idle cost and no power up cost.

Lemma 2.0.1. The always OFF strategy has an unbounded competitive ratio

Proof. For the sake of competitive analysis, we assign an initial cost to the offline algorithm β which

is the initial power up cost, the competitive ratio can be seen below

Competitive Ratio =
nβ

β

In the sequence, there will be arbitrarily many requests, so n → ∞, the offline cost does not incur

any additional cost since it does not power down after each request but rather stay ON and process

each subsequent request. The online strategy will power down and up after each request which

incurs the the power up cost each time which causes this strategy to be unbounded.

rr r r r r r r r
0

1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

i

Figure 2.1: Cost of always OFF approach

In the always remain ON approach, the machine never powers off regardless of the length of

its idle period. This approach in a practical sense might not be a bad idea if requests are arriving

after each other with high frequency. If we consider the adversary, the next request arrives after an

arbitrarily long time which will maximize the cost of the online algorithm, which causes the energy

consumption to grow continuously. The online algorithm could have saved power if it had powered

down at some point rather than staying in the ON state throughout the duration in an idle state.

Meanwhile the optimal offline algorithm will just power down after the request since the offline

algorithm knows the next request will arrives after a long period of time

7

www.manaraa.com

Lemma 2.0.2. The always ON strategy has an unbounded competitive ratio

Proof. The cost of the online algorithm is αt where t will be the idle length between the two requests.

The offline cost is β due to its initial power up and the machine powers down right after the request

and does not power up due to the fact that the next request arrives after a long period of time. .

Competitive Ratio =
αt

β

We can see the the offline cost does not grow while the online cost is growing at a linear rate which

makes the competitive ratio unbounded.

Idle

8

Idle

r
i

r
i−1

r
i−20

r
IdleIdle

Figure 2.2: Cost of always ON approach

Another option is to remain idle in between requests for some time and eventually power down

if the machine waits long enough without a request arriving. The issue is determining how long the

idle duration will be to minimize the online algorithm cost against the adversary. Several papers

introduced this problem which is equivalent to the ski rental algorithm which can be found in

[6, 34, 43, 48, 17, 31, 47]. The idea is if one wishes to go skiing and this individual needs skis, either

they can be bought or rented.

There is a cost to rent and buy the skis and renting will typically cost less than buying. It

is clear that if one goes skiing rarely, then there is no point buying and thus renting would the

favorable option, and if one goes skiing frequently, then buying would be the favorable option. For

the ski rental problem, if one rents the skis one is guaranteed to go skiing once again, and once one

buys the skis, one does not go skiing again, this scenario is produced by the adversary. This model

can be directly applied to the 2 state power down problem, where remaining idle is equivalent to

renting skis and powering down is equivalent to buying the skis, we can amortize the power down

cost because the machine will most likely be used again so there will be a cost to power up.

Call the offline algorithm OPT and the online algorithm A. The cost of the offline algorithm is

OPT = min{αt, β}. For A, it stays idle in the ON state and switch to the OFF state after time t,

the adversary guarantees the request arrives after the machine powers down; the cost of A in the

worst case is αt + β. From the cost of OPT , we can see that its cost does not exceed β for any

8

www.manaraa.com

request, t ≤ β/α. For the cost of A and OPT , we can compute the competitive ratio for any t value.

We will use values α = β = 1.

0.5 1.0 1.5 2.0

3

4

5

6

Figure 2.3: Competitive ratio for various delay times

Lemma 2.0.3. The competitive ratio is minimized when t = β/α

Proof. We refer to Figure 2.3, β = r = 1 and so β/α = 1. The graph shows that when the delay

time is β/α, the competitive ratio is minimized. Let us assume that the competitive ratio is not

minimized when t = β/α. First it will be assumed that when t > β/α, the competitive ratio is

minimized.

Competitive ratio =
αt+ β

β
= 1 +

αt

β

As t becomes larger, the competitive ratio also will grow larger. So the competitive ratio is not

minimized if t > β/α. Now let us assume that the competitive ratio is minimized when t < β/α.

Competitive ratio =
αt+ β

αt
= 1 +

β

αt

One can see that as t gets smaller, the competitive ratio will grow. The competitive ratio is not

minimal when t < β/α. Therefore, the competitive ratio can only be minimized when t = β/α.

Theorem 2.0.4. The two state power down problem is 2-competitive.

Proof. From lemma 2.0.3, we know that the competitive ratio is minimized when t = β/α. We have

the following competitive ratio:

Competitive ratio =
αt+ β

β
=
β + β

β
= 2

9

www.manaraa.com

If we were to compute the competitive ratios for idle times t < β/α and t > β/α, the competitive

ratios will be larger than 2 in either case. For the reason that there is an adversary, there is no way

to improve this upper bound which is 2-competitive [6, 31, 34, 47].

10

www.manaraa.com

Chapter 3

Multiple State Problem

In the multiple state problem we are given an ON and OFF state with a number of intermediate

lower power states. State 0, S0 will denote the ON state and Sn will denote the OFF state. Multiple

power states has been trending lately, we can see the power specs for Windows [1] and Apple [2].

Windows machines have 7 power states: ON, OFF, 3 intermediate sleep states, hibernate and soft

off state. For each state Si, there will be an idle cost to remain in that state and a cost to power up

to the ON state. The cost each state will incur will be Cost(Si(t)) = αit + βi where t will denote

the duration in state i. State 0 will be the ON state so β0 = 0 and state n will denote the OFF

state so αn = 0. The idle costs will satisfy the following sequence α0 > α1 > α2 > ... > αn and the

power up costs will satisfy the following β0 < β1 < β2 < ... < βn.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 3.1: Cost incurred by each state

Si

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 3.2: Optimal cost for multiple

states

Figure 3.1 is a plot of each Cost(Si), using this figure, figure 3.2 shows the cost of the offline

algorithm which is denoted by the solid line. The cost curves in this example are arbitrary. Each

cost curve for each state can be plotted and the intersection between two functions determine which

state the offline algorithm will use given the length of the idle time between requests. The cost of

11

www.manaraa.com

the offline algorithm will be Cost(Sj) = minni=0{αjt+ βj} where t is the delay time. Let state i be

the highest power state before state j such that Cost(Si) = Cost(Sj).

tj =
βi − βj
αj − αi

(3.1)

The online algorithm will also use these tj times to denoted which state will be used. Unlike the

offline algorithm, it is not known when the request arrives, so it cannot choose which state to start

at the beginning of the idle period but rather start from the ON state and remain in that state for

ti (i > 0) time units and at that time will switch to state i and will repeat this process until the

machine will power down. This algorithm is called the lower envelope algorithm (LEA) which was

introduced in Irani et al [30].

Lemma 3.0.1. For any system, the worst case competitive ratio occurs at a transition time [9].

Proof. Let A(t) be the cost of an online algorithm at time t and OPT (t) be the cost of an offline

algorithm at time t and ρ denotes the competitive ratio. The earliest time that A(t) = ρOPT (t)

is denoted by t̄. We assume that t̄ is not a switch time to a lower state for A. So for some δ, the

interval (t̄ − δ, t̄ + δ) is increasing at a linear rate since there is no transition to a lower state in

this interval. If the interval (t̄ − δ) is strictly less than the competitive ratio and A(t̄) = ρOPT (t̄),

then during this interval, the slope of the online algorithm is greater than the slope of the offline

algorithm. That means at t > t̄, A(t) > ρOPT (t) which leads to a contradiction. If the competitive

ratio is equal for the duration (∆t − δ) and A(t̄) = ρOPT (t̄), the A(¯t+ δ) = ρOPT (¯t+ δ) holds

but the eventually the online algorithm will incur a power up cost (due to the adversary) and the

offline algorithm will not incur this power up cost so the competitive ratio increases and thus the

competitive ratio was not maximized at time t̄ which also leads to a contradiction.

In LEA, we can see that after every transition time, the cost jumps by βj at ti (where state j is

a lower power state than state i) when the machine powers down to state i. And the competitive

ratios will reflect those jumps in the following figures.

12

www.manaraa.com

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 3.3: Cost of LEA

0.5 1.0 1.5 2.0

1.2

1.4

1.6

1.8

2.0

Figure 3.4: Competitive ratio of LEA

It can be seen that in this instance the competitive ratio is less than 2 for the entire idle duration

except when the machine powers down to the OFF state. Once again the online costs and the

competitive ratios in figures 3.3 and 3.4 use arbitrary standby and power up costs.

Theorem 3.0.2. LEA is 2-competitive [30].

Proof. The competitive ratio for LEA is:

RLEA =

∑j−1
i=0{αi(ti+1 − ti)}+ βj

αktj + βj
= 1 +

∑j−1
i=0{αi(ti+1 − ti)} − αjtj

αktj + βj

In order to show that LEA is 2-competitive in the worst case, we show the following inequality

j−1∑
i=0

{αi(ti+1 − ti)} − αjtj ≤ αktj + βj

Using (3.1), we can rewrite the above inequality

(β1 − β0) + (β2 − β1) + ...+ (βj − βj−1)− α0t0 ≤ αktj + βj

βj − β0 − α0t0 ≤ αjtj + βj

The values of t0 and β0 are both 0. So the inequality will always hold for every j. If j = n then we

have βn ≤ βn and then the competitive ratio will be 2. Which is depicted in figure 3.4.

Theorem 3.0.3. There is a (3 + 2
√

2)-competitive strategy for any system [9].

Proof. The term di,j = βj − βi is introduced and therefore
∑k
i=1 di−1,i = βk. This allows us to

amortize the power up costs to pay a cost each time the machine switches to a lower power state and

not pay for the power up cost since that cost has already been incurred. Now we assume that for γ,

βi ≥ γβi−1 for all i. The online cost is A(t) =
∑i−1
j=0(αj(tj+1 − tj) + dj,j+1) + αi(t− ti) using LEA.

The offline algorithm will be OPT (t) =
∑i−1
j=0 αj(tj+1− tj). If a new request occurs at a switch time

ti, the we have the following online cost

A(ti) =

i−1∑
j=0

(αj(tj+1 − tj) + dj,j+1)

13

www.manaraa.com

We obtain a slightly larger upper bound since
∑i−1
j=0 βj >

∑i−1
j=0 dj,j+1

A(ti) ≤
i−1∑
j=0

αj(tj+1 − tj) +

i−1∑
j=0

βj

Since βi ≥ γβi−1, we say that βi/γ ≥ βi−1 and βi/γ
2 ≥ βi−2, and we generalize this to obtain

βi
∑i−1
j=0 γ

−(i−j)

≤ OPT (ti) + βi

i−1∑
j=0

γ−(i−j)

Since βi < OPT (ti)

≤ (1 +
γ

γ − 1
)OPT (ti) =

2γ − 1

γ − 1
OPT (ti)

Given some γ for all t we have a system that is 2γ−1
γ−1 competitive. Now we assume that βi ≥ γβi−1

does not hold. In this case, the cost of OPT (t) =
∑i−1
j=0 αj(tj+1−tj) will not be optimal since not all

the states will be used in the optimal solution because of the fact that βi ≥ γβi−1 does not always

hold. We will consider an alternate optimal cost denoted by OPT ′(t). We will have a set of states S

that OPT ′ uses. We first start with S = {Sn}, because S must contain the OFF state. We will look

at the states in reverse order, initially Sn is added to S, now we seek to find a state i < n such that

γβi ≤ βn. Now that state i is added to S, we find the largest j such that 0 ≤ j < i and γβj ≤ βi.

And now we apply the same offline algorithm on the set S to obtain a different offline cost OPT ′(t).

Suppose there are states Si, Sl, and Sk where i < l < k and Sl /∈ S. We have OPT (t) =

OPT ′(t) in intervals t ∈ [ti, ti+1) and t ∈ [tj , tj+1). The cost of OPT ′(t) for t ∈ [tl, tl+1) will be

min{αit+ βi, αjt+ βj} and the cost for OPT (t) = αlt+ βl. OPT
′(t) will choose αit+ βi as its min

value and since Sl /∈ S then γβl > βi and αl > αi.

OPT ′(t) = βi + αit ≤ γ(αlt+ βl) = γOPT (t)

Which shows that OPT is larger than OPT ′ by a factor of γ which means A(t) ≤ 2γ−1
γ−1 OPT

′(t) ≤

γ 2γ−1
γ−1 OPT (t). The expression γ 2γ−1

γ−1 is minimal when γ = 1+ 1√
2

which means we get a competitive

ratio of 3 + 2
√

2.

Let A be a ρ-competitive strategy, then there exists an algorithm A′ such that it is ρ eager which

is also ρ-competitive [9]. A ρ eager strategy is defined to be when the machine transitions to a lower

power state at time t, such that A′(t) = ρOPT (t). We can always choose transition times such that

at a transition time t, A′(t) < ρOPT (t). To show that a ρ eager strategy does exist, we will assume

T is the earliest transition time that is not eager. We will let T ′ < T be an earlier transition time,

if there is no earlier transition time then T is the earliest transition time so T ′ = 0.

14

www.manaraa.com

The cost of A in the interval (T ′, T) has no transition so it is continuous over that interval. Let

T̄ be the earliest time after T ′ such that A(t) = ρOPT (t). Consider an online algorithm A′ which is

identical to A except it transitions from Si to Sj at time T̄ instead of T . So in the interval [T , T̄),

both A and A′ will have the same cost. Both A and A′ will be ρ-competitive at time T̄ however,

since A′ transitions to a lower power state at T̄ , at time T , A′(t) < A(t) since A′ will use less power

while in Sj and have a smaller slope in the interval [T̄ , T] and A will have to pay the same cost di,j ,

therefore A′ will also be ρ-competitive. This process can be repeated for all states in the system to

obtain a ρ-competitive strategy that is also ρ eager.

Theorem 3.0.4. Given n states, there is a strategy that computes a schedule that obtains the optimal

competitive ratio in O(n2 log n log(1/ε)) [9]

Proof. Consider a function f(t) = αi(t − ti) + ρOPT (ti) + di,j which gives the cost of the online

algorithm once it enters state i. We attempt to find a switching time t from state i to state j while

remaining ρ eager, if there is no such t then there does not exist a ρ eager strategy from state i to

j. We compare the cost of function f(t) with ρOPT (t), we will let OPT be in state sl at time ti.

We will denote b0 the time which OPT is in state s0, b1 in state b1, and bn is in state sn. We have

a range [bl, bn], in which the time t such that f(t) = ρOPT (t) must exist in this range. We can

perform a binary search to determine the smallest possible range in which t could exist. Starting

from sl and sn as the endpoints for OPT , we choose time bmid and if f(bmid) > ρOPT (bmid) then

we update the right endpoint to this bmid value and update the left endpoint sl to this midpoint,

due to the fact that f(t) is a linearly increasing function and ρOPT is a concave function. Once this

binary search completes, we know which state ρOPT will use so then we can determine a t value

such that f(t) = ρOPT (t), which will be the time in which the online algorithm switches from state

i to state j while being ρ eager. This process will take O(log n) in which n is the number of states.

We must perform the operation between all pairs of states i and j, which will be O(n2) possible

pairs, and finding the ρ eager transitions for all the states will take O(n2 log n). Once we compute

the t values for all i and j values we perform a search that finds a path from s0 to sn using the

transition times between all states i and j if there exists such a schedule and an error if one does

not exist. This search does not increase the asymptotic complexity so for each ρ that is given, a

schedule or an error will be returned in O(n2 log n) time.

From theorem 3.0.3, we know that the optimal competitive ratio must be in the range [1, 3 +

2
√

2]. The cost for each state is shown below. Let ρ* denote the optimal competitive ratio and

ρ < ρ* + ε, and thus ρ will be an approximation. Now we will perform the O(n2 log n) algorithm for

each value of ρ in the range [1, 3 + 2
√

2]. We will once again perform a binary search in that range

to find the optimal ρ. Using the ε approximation value we have to perform the O(n2 log n) operation

15

www.manaraa.com

log[(3 + 2
√

2 + 1/2)(1/ε)] number of times. We use inverse ε because if ε is arbitrarily smaller, the

number of steps increase, and then we have a more accurate ρ value, and takes less number of steps

if ε is arbitrarily larger. This binary search will find the nearest optimal ρ value depending on ε. So

the entire process takes O(n2 log n log(1/ε)) time.

In the rest of this dissertation, we work on more specific systems that have small number of states.

This is designed to isolate the problem and perform a dense analysis and obtain more exact schedules

and apply power management strategies onto these systems, and we also show how transition times

are computed and how they differ depending on the costs of the ON, OFF, and any intermediate

states. This chapter was a survey of a previously solved problem of a machine with n states and

we branch off to work on system with small states as well as a continuous state system, and we will

apply tapering strategies onto these systems.

16

www.manaraa.com

Chapter 4

Three State Problem

In this chapter, we give a complete characterization of the three state system. In the three state

problem, the states will be ON, OFF, and INT where INT will be some lower power intermediate

state. As discussed earlier, the offline algorithm will schedule itself to yield the optimal cost. We

seek to choose an online algorithm that has the best competitive ratio among all possible online

algorithms. The online algorithm will have two switching times, one for when there is a switch from

ON to INT and one for when there is a switch from INT to OFF.

State Idle Cost Power Up Cost

ON 1 0

INT a ∈ (0, 1) d ∈ (0, 1)

OFF 0 1

Table 4.1: Three state costs

In the online model, the machine will have switching times x1 and x2 which denote the switch

times from ON to INT and INT to OFF respectively. The offline model will have xopt1 and xopt2 ,

for these values, the optimal offline algorithm will decide from which state it will begin based on the

idle time, if the request arrives before xopt1 then it will be in the ON state during the idle duration,

if the request arrives between xopt1 and xopt2 then it will be in the INT state, and if the request

arrives after xopt2 , then it will be in the OFF state. We will have Costopt defined in the following

17

www.manaraa.com

way:

Costopt(t) =


t if t < xopt1

at+ d if xopt1 ≤ t < xopt2

1 if t ≥ xopt2
Since this is an offline model, the values of xopt1 and xopt2 are known in advance given the values

for a and d.

Lemma 4.0.1. For the optimal offline model, xopt1 = d/(1− a) and xopt2 = (1− d)/a

Proof. The offline cost curves are f(t) = t, f(t) = at+d, and f(t) = 1. The curve f(t) = t intersects

with f(t) = at+d when t = d/(1−a), before this time, the ON state yields the optimal cost and after

this time, the INT state yields the optimal cost. The curve f(t) = at + d intersects with f(t) = 1

at t = (1 − d)/a. If the request arrives before t = d/(1 − a), then from 0 to d/(1 − a) the optimal

cost is obtained using the cost curve f(t) = t which is the ON state, if the request arrives between

d/(1− a) to (1− d)/a, then the optimal cost is obtained using the cost curve f(t) = at + d, which

is the INT state, and if the request arrives at or after (1− d)/a, the optimal cost curve is f(t) = 1

which is the OFF state. Therefore xopt1 = d/(1− a) and xopt2 = (1− d)/a.

Using the formulas from lemma 4.0.1, we can compute the xopt1 and xopt2 and hence compute

the offline costs. We can see the curves that represent the offline costs below.

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: Optimal cost when state

INT has costs a = 0.6 d = 0.4

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: Optimal cost when state

INT has costs a = 0.5 d = 0.4

18

www.manaraa.com

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Optimal cost when state

INT has costs a = 0.4 d = 0.4

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Optimal cost when state

INT has costs a = 0.3 d = 0.3

We see that in figure 4.1, the offline algorithm goes from the ON state directly to the OFF state,

in the other cases we see that there are periods where the INT state is utilized.

Lemma 4.0.2. If a+ d ≥ 1, the offline algorithm will not use the intermediate state.

Proof. We assume that if a+d ≥ 1, the offline algorithm will use the intermediate state. Once again

we have the three curves f(t) = t, f(t) = at + d, and f(t) = 1. Figure 4.5 and 4.5 shows the two

possible cases when a+ d = 1 and when a+ d > 1.

1

f(t) = 1

f(t) = t

f(t) = at + d

Figure 4.5: ON, INT, and OFF state curves when

a+ d > 1

1

f(t) = 1

f(t) = t

f(t) = at + d

Figure 4.6: ON, INT, and OFF state curves when

a+ d = 1

If a + d > 1, then at time 1, the cost of the INT state will be larger than cost of the ON or

OFF state. Also at time 0, the INT state will have a larger cost than ON state and since both cost

curves are growing at a linear rate, the INT state cost will be larger than the ON state for the entire

duration from 0 to 1, thus using the INT state in that duration will not yield the optimal cost. If

a + d = 1, then similar to when a + d > 1, in the duration 0 to 1, the INT state will have a larger

cost than the ON state and will have equal costs at time 1. Whether a+ d = 1 or a+ d > 1, after

19

www.manaraa.com

time t = 1 the OFF state will be the state with the minimum cost. And thus, if the offline algorithm

uses the INT state from 0 to 1, it will obtain a larger cost rather than using the ON state which

leads to a contradiction.

Thus when a + d = 1, we have xopt1 = xopt2 and thus INT state is never used. The only

situations where the offline algorithm uses the INT state is when a+ d < 1, so now we can update

the optimal threshold times to xopt1 = min{d/(1 − a), 1} and xopt2 = max{(1 − d)/a, 1}. For the

online algorithm we need to determine its x1 and x2 values that minimizes the competitive ratio. In

the online model, the machine will start in the ON state will switch to INT and OFF state based

on the values for x1 and x2. The Costonline will be

Costonline(t) =


t if t < x1

x1 + a(t− x1) + d if x1 ≤ t < x2

x1 + a(x2 − x1) + 1 if t ≥ x2

Lemma 4.0.3. In order to have an optimal competitive ratio, x1 ≤ xopt1 must hold.

Proof. For the case of x1 ≤ xopt1 , we assume that x1 > xopt1 . If this is the case, xopt1 = x1 + δ

such that δ > 0. Then we have the following competitive ratio:

xopt1 + δ + d

a(xopt1 + δ) + d

The online and offline costs can be compared to get:

xopt1 + δ + d ≥ a(xopt1 + δ) + d

xopt1 + δ ≥ a(xopt1 + δ)

It is clear that as δ > 0 increases the competitive ratio increases since the online costs increases at

a faster rate than the offline cost.

Lemma 4.0.4. A necessary condition for the optimal competitive ratio is when x2 = xopt2 holds.

Proof. We assume the contrary that x2 < xopt1 and therefore x2 = xopt1 − δ where δ > 0, so the

competitive ratio would be:
x1 + a(xopt1 − δ − x1) + 1

xopt1 − δ

a+
x1(1− a) + 1

xopt1 − δ

As δ increase the competitive ratio increases as well and x2 ≥ xopt1 ≥ x1. So now to show that x2 =

xopt2 must be true, we first assume x2 > xopt2 , so the competitive ratio would be x1+a(x2+δ−x1)+1.

20

www.manaraa.com

It is clear that as δ increases, the competitive ratio will increase linearly. Now we assume the examine

the competitive ratio if xopt1 ≤ x2 < xopt2 . So x2 = xopt2 − δ. The competitive ratio would be:

x1 + a(xopt2 − δ − x1) + 1

a(xopt2 − δ) + d

1 +
x1(1− a) + 1− d
a(xopt2 − δ) + d

Once again, as δ increases the competitive ratio is increasing. So when x2 > xopt2 and x1 ≤ x2 <

xopt2 both lead to contradictions because the competitive ratio will not minimal in those cases thus

x2 = xopt2 to minimize the competitive ratio.

From lemma 4.0.4, the competitive ratio for the 3 state machine depends only on the value of x1,

since it is known the competitive ratio is minimal when x2 = xopt2 and xopt2 can be computed by

only knowing the values of a and d. Given an x1 and x2, the maximum cost for the online algorithm

at time x1 and x2 will be x1 + d and x1 + a(x2 − x1) + 1 respectively. The optimal cost offline cost

can be computed at times x1 and x2 using xopt1 and xopt2 , so the competitive ratios can be derived

for those two intervals, which will be denoted by CR1 and CR2.

CR1 =
x1 + d

x1
(4.1)

CR2 = x1 + a(x2 − x1) + 1 (4.2)

The goal is to minimize the worst case competitive ratio for the two switching times. The competitive

ratio of the system will be max{CR1, CR2}.

Lemma 4.0.5. The competitive ratio for the 3 state machine is minimized when CR1 = CR2.

Proof. It will be assumed that CR1 6= CR2 then either CR1 or CR2 will have the greater value. We

will first assume that CR1 < CR2 and the competitive ratio will be minimal.

21

www.manaraa.com

0.5 1.0 1.5 2.0

1.2

1.4

1.6

1.8

Figure 4.7: Competitive ratio CR1 <

CR2

0.5 1.0 1.5 2.0

1.2

1.4

1.6

1.8

2.0

Figure 4.8: Competitive ratio CR1 >

CR2

0.5 1.0 1.5 2.0

1.2

1.4

1.6

1.8

Figure 4.9: Competitive ratio CR1 =

CR2

In Figure 4.7, if the value for x1 would be decreased by an arbitrarily small constant such that

CR1 < CR2 is still preserved, the value for CR1 would increase but the value for CR2 would decrease

from (4.1) and (4.2) respectively. This leads to a contradiction because the competitive ratio was

not minimal. In figure 4.8, the value of x1 can be increased while still maintaining CR1 < CR2.

This also leads to a contradiction since the competitive ratio between CR1 and CR2, the maximum

of the two, has decreased. So when CR1 6= CR2 the competitive ratio is not minimal and so it can

only be minimal if CR1 = CR2.

Lemma 4.0.6. For an n state power down problem, the competitive ratio is minimized when CR1

= CR2 = ... = CRn.

Proof. Here we extend lemma 4.0.5, from 3 states to n states. Following lemma 4.0.5, we will assume

the contrary that the competitive ratio is minimized when CR1 6= CR2 6=... 6= CRn holds. We know

that same principle applies with n states as it does with 3 states, that the competitive ratio for n

states will be maxni=1{CRi}, so for some state j the competitive ratio CRj will be the maximum

of all the competitive ratios. In order to modify the competitive ratio, we choose a different xj

22

www.manaraa.com

value which causes the system to transition from state j to j + 1 at a different time, we will choose

a larger xj value. Applying this will cause the competitive ratio CRj to decrease and CRj+1 to

increase while still maintaining CRj as the maximum competitive ratio. Thus if we do a search for

the maximum competitive ratio again with this new xj value, maxni=1{CRi} CRj will remain the

largest competitive ratio but the overall competitive ratio for the system has been decreased so the

initial assumption was incorrect because we obtained a smaller competitive ratio so CR1 = CR2 =

... = CRn must hold in order to have the minimal competitive ratio.

Returning to the 3 state problem, the only way the cost of the online algorithm can be minimized

if the value of x1 is optimal. The values of a and d can be any value between 0 and 1, and a+d = λ.

To have the optimal competitive ratio we know that CR1 = CR2 must be true. The value of x2 is

known, and setting CR1 = CR2 is used to obtain the optimal x1 value.

x1 + d

x1
= x1 + a(x2 − x1) + 1

And now we can solve for x1. We can also rewrite the equation since a = λ− d.

x1 =
ax2 −

√
4d− 4ad+ a2x2

2

2(a− 1)
=

(λ− d)x2 −
√

4d− 4d(λ− d) + x2
2(λ− d)2

2(λ− d− 1)
(4.3)

Using the value of x1, we can substitute (4.3), into CR1 or CR2 and that will yield the optimal

competitive ratio given a value for a and d.

CRopt = 1 +
2d(λ− d− 1)

(λ− d)x2 −
√

4d− 4d(λ− d) + x2
2(λ− d)2

(4.4)

Using equation (4.4), we can give a value for λ, and search for the optimal a and d values that will

minimize the competitive ratios.

Theorem 4.0.7. For a 3 state system where a + d = 1, the optimal competitive ratio is achieved

when a = 3
5 and d = 2

5 .

Proof. Consider the optimal competitive ratio in equation (4.4). Since λ = 1, we can compute the

competitive ratios for all possible values of d.

23

www.manaraa.com

0.2 0.4 0.6 0.8 1.0

1.85

1.90

1.95

Figure 4.10: Competitive ratio for various d values

Thus it can be seen that when d = 0.4, it is optimized, we can compute the value for when the

slope of the concave up parabola is 0, which will the value of d in which the competitive ratio is

minimized.

CRopt

(d
dd

)
=

10d− 2

4
√

5d2 − 2d+ 1
− 1

2
= 0

After simplifying the above expression we get

20d2 + 8d = 0

Solving for d, the value d = 2
5 solves the above equation, and simultaneously we have a = 3

5 since

a + d = 1, and with those values the competitive ratio will be 1.8 which is the best known upper

bound for a 3 state system.

In Tables 4.2 and 4.3, we tabulate the minimum competitive ratio for various λ values where

λ = a+ d.

24

www.manaraa.com

a d λ CR x1 x2

0.0512 0.0488 0.1 1.9976 0.0489 18.580

0.1046 0.0954 0.2 1.9908 0.0963 8.6487

0.1600 0.1400 0.3 1.9800 0.1429 5.3750

0.2173 0.1827 0.4 1.9654 0.1893 3.7613

0.2764 0.2236 0.5 1.9472 0.2361 2.8090

0.3373 0.2627 0.6 1.9254 0.2839 2.1859

0.4000 0.3000 0.7 1.9000 0.3333 1.7500

0.4646 0.3354 0.8 1.8708 0.3852 1.4305

0.5312 0.3688 0.9 1.8376 0.4403 1.1883

0.6000 0.4000 1.0 1.8000 0.5000 1.000

0.6312 0.4688 1.1 1.8376 0.5597 1.0000

0.6646 0.5354 1.2 1.8708 0.6148 1.0000

0.7000 0.6000 1.3 1.9000 0.6667 1.0000

0.7373 0.6627 1.4 1.9254 0.7161 1.0000

0.7764 0.7236 1.5 1.9472 0.7639 1.0000

0.8172 0.7827 1.6 1.9654 0.8107 1.0000

0.8600 0.8400 1.7 1.9800 0.8571 1.0000

0.9046 0.8954 1.8 1.9908 0.9037 1.0000

Table 4.2: Experimental results for a given λ value

Figure 4.11: Optimal competitive ratios for given λ values

25

www.manaraa.com

a d λ Competitive ratio x1 x2

0.565305 0.384695 0.95 1.81939 0.46949 1.088447829

0.572196 0.387804 0.96 1.81561 0.475479 1.0699061161

0.579111 0.390889 0.97 1.81178 0.481522 1.0518035403

0.58605 0.39395 0.98 1.8079 0.487622 1.034126781

0.593012 0.396988 0.99 1.80398 0.493781 1.0168630652

0.6 0.4 1 1.8 0.5 1

0.603012 0.406988 1.01 1.80398 0.50622 1

0.60605 0.41395 1.02 1.8079 0.512377 1

0.609111 0.420889 1.03 1.81178 0.518478 1

0.612196 0.427804 1.04 1.81561 0.524522 1

0.615305 0.434695 1.05 1.81939 0.530511 1

Table 4.3: Experimental results for λ values close to 1

In tables 4.2 and 4.3 and figure 4.11, if the optimal competitive ratios are found for several λ

values, the overall optimal competitive ratio is obtained when λ = 1. Based on those experimental

results, we will assume for a 3 state machine, the competitive ratio is optimal when a+ d = 1.

26

www.manaraa.com

Chapter 5

The Five State Problem

5.1 Preliminaries

In this chapter, we take the basic concepts from the three system system and we apply them onto

a five state system. When we consider the five state problem we have five power states where we

have an on state s0, an off state s4, and a set of intermediate states s1, s2, and s3 where the higher

index denotes a lower power state. Each state will have a set of unit costs and power up costs and

a0 > a1 ≥ a2 ≥ a3 > a4 where a4 = 0 since it is the off state and we will normalize the costs once

again so a0 = 1. For the power up costs the following will be true d0 < d1 ≤ d2 ≤ d3 < d4 where

d0 = 0 since it is the cost for the on state to power up to the on state and d4 = 1 since the highest

power up cost is from the off state to the on state.

We have a set of transition times, x1, x2, x3, and x4 where each xi denotes a transition from si−1

to si. We will have a set of times xopt1 , xopt2 , xopt3 , and xopt4 which will be used for the optimal

offline algorithm to determine the optimal cost based on the wait time. Given the value for t, the

idle time duration, the online cost will be computed in the following way:

A(t) =



a0t if t < x1

a0x1 + a1(t− x1) + d1 if x1 ≤ t < x2

a0x1 + a1(x2 − x1) + a2(t− x2) + d2 if x2 ≤ t < x3

a0x1 + a1(x2 − x1) + a2(x3 − x2) + a3(t− x3) + d3 if x3 ≤ t < x4

a0x1 + a1(x2 − x1) + a2(x3 − x2) + a3(x4 − x3) + d4 if t ≥ x4

The offline cost will be OPT (t) = min{a0t, a1t+d1, a2t+d2, a3t+d3, d4}. As we know from lemma

3.0.1 the competitive ratio is maximized at transition time and from lemma 4.0.6, the competitive

27

www.manaraa.com

ratio can only be minimized if the competitive ratio for each transition time xi are equal. The

competitive ratio for each transition time will be denoted by CR, as seen in the following:

x1 + d1

x1
= CR (5.1)

x1 + a1(x2 − x1) + d2

min{x2, a1x2 + d1}
= CR (5.2)

x1 + a1(x2 − x1) + a2(x3 − x2) + d3

min{x3, a1x3 + d1, a2x3 + d2}
= CR (5.3)

x1 + a1(x2 − x1) + a2(x3 − x2) + a3(x4 − x3) + d4

d4
= CR (5.4)

We solve for x1, x2, x3, and x4 in equations 5.1, 5.2, 5.3, and 5.4 respectively. Let α = x1(1− a1),

β = x1(1− a1) + x2(a1 − a2), β′ = x1(a1 − 1) + x2(a2 − a1), γ = β′ + x3(a3 − a2). We obtain:

x1 =
d1

CR− 1
(5.5)

x2 = max

{
α+ d2

CR− a1
,
α+ d2 − CR · d1

a1(CR− 1)

}
(5.6)

x3 = max

{
β + d3

CR− a2
,
β′ − d3 + CR · d1

a2 − a1 · CR
,
β + d3 − CR · d2

a2(CR− 1)

}
(5.7)

x4 =
γ + CR− 1

a3
(5.8)

Notice that in equations 5.2 and 5.3 we have several several expressions for the optimal cost and

in equations 5.6 and 5.7 we have several possible values for x2 and x3. Lemmas 9.3.1 and 9.3.2 proved

that when the minimal optimal cost was used to compute the online standby time, that standby time

would yield the maximum of all possible standby times. And thus, we use the maximum standby

time for x2 and x3. As for x4, we do not consider all the possible offline costs, in lemma 4.0.4 for

the three state problem, it was proven that x2 = xopt2 must hold and is a necessary condition to

have an optimal competitive ratio, similar holds for the five state problem, we can only obtain the

optimal offline cost when x4 = xopt4 , for the same reason as with the three state problem, which was

shown in lemma 4.0.4. Thus, we do not consider x4 in an event if one of the following x4, a1x4 + d1,

a2x4 + d2, and a3x4 + d3 is the minimal cost because that would imply that x4 < xopt4 which we

know will not result in the optimal competitive ratio. The optimal times can be computed in the

28

www.manaraa.com

following way:

xopt4 : max
t

: d4 =



a0t

a1t+ d1

a2t+ d2

a3t+ d3

(5.9)

These will determine the state of the offline algorithm based on the wait time of the net request.

So if the next request occurs between xopti and xopti+1
then the offline algorithm will be in state i

until the request arrives.

5.2 The Five State Power Down Algorithm

For any state machine, there exists a schedule that is (3 + 2
√

2) - competitive. [9] Our goal is to

find the minimal competitive ratio in the range [1, 3 + 2
√

2]. Given the 5 states and their respective

ai and di values, we assign a value for CR and we compute the standby times using equations 5.5,

5.6, 5.7, and 5.8. The idea of the algorithm is we use some value for the competitive ratio, and then

we compute the standby times and we obtain switch times that produce the given competitive ratio.

This however may not be the optimal competitive ratio for this system. If the value of x4 > xopt4 +θ,

where θ > 0 is an arbitrarily small constant, then we can choose a new CR that is smaller than the

value we assigned earlier since we know that the competitive ratio can only be minimal if x4 = xopt4 .

However, if x4 < xopt4 then there does not exist a schedule for this five state system that will be

CR-competitive so we need to choose a new competitive ratio that is larger than CR. We keep

applying the strategy until we find a schedule such that xopt4 ≤ x4 ≤ xopt4 + θ. The algorithm

essentially will be an approximation algorithm so we may not obtain the exact minimal competitive

ratio but rather a competitive ratio that will be arbitrarily close the optimal competitive ratio. Here

is the sketch of the five state power down problem.

29

www.manaraa.com

Data: Given values a0→4, and d0→4

lowerBound = 1, upperBound = 3 + 2
√

2;

CR = (leftEnd + rightEnd) / 2;

Compute x1, x2, x3, and x4 using CR;

while x4 < xopt4 or x4 > xopt4 + θ do

if x4 < xopt4 then

lowerBound = CR;

else

upperBound = CR;

end

CR = (lowerBound + upperBound) / 2;

Recalculate x1, x2, x3, and x4 using the updated CR value;

end

Algorithm 1: Five State Power Down Algorithm

We will execute algorithm 1, for a five state system with the given standby and power up costs,

a0 = 1 d0 = 0 a1 = 0.55 d1 = 0.225 a2 = 0.4 d2 = 0.4 a3 = 0.25 d3 = 0.60 a4 = 0 d4 = 1. The value

of xopt4 = 1.6 and θ = 0.01. Each iteration of algorithm 1 is tabulated below.

Iteration x1 x2 x3 x4 lowerBound upperBound CR

1 0.0932 0.1543 0.2207 9.2632 1.000 5.828 3.414

2 0.1864 0.2920 0.4027 4.0756 1.000 3.414 2.207

3 0.3731 0.6249 1.0401 0.7414 1.000 2.207 1.603

4 0.2486 0.3778 0.5248 2.6309 1.603 2.207 1.905

5 0.2984 0.4438 0.7193 1.7810 1.603 1.905 1.754

6 0.3314 0.4864 0.8488 1.3184 1.603 1.754 1.679

7 0.3142 0.4643 0.7815 1.5509 1.679 1.754 1.716

8 0.3061 0.4538 0.7496 1.6670 1.716 1.754 1.735

9 0.3099 0.4587 0.7645 1.6122 1.716 1.735 1.726

10 0.3121 0.4615 0.7729 1.5816 1.716 1.726 1.721

11 0.3108 0.4598 0.7678 1.6000 1.721 1.726 1.724

Table 5.1: Execution of algorithm 1 with sample input

When we look at table 5.1, we are essentially performing a binary search at each iteration. At the

30

www.manaraa.com

last iteration we obtain a value for x4 that is within the xopt4 + θ or rather in this case x4 = xopt4 .

We notice that when x4 < xopt4 the competitive ratio is smaller than when x4 ≥ xopt4 , which is a

logical error. This occurs only because when we compute x4 from equation 5.8, we only considered

the offline cost of d4, we did not consider costs x4, a1x4 + d1, a2x4 + d2, or a3x4 + d3. Which means

the true optimal cost, a cost less than d4, was not used to compute x4 which results in a lower

competitive ratio than the actual optimal competitive ratio.

0 5000 10000 15000 20000
0.0

0.5

1.0

1.5

2.0

Figure 5.1: Online and offline costs for example

5 state system

0 5000 10000 15000 20000
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 5.2: Competitive Ratio For Various

Standby Times

Figure 5.1 shows the cost of the online and offline algorithms for the five state machine and figure

5.2 displays the competitive ratio for using the optimal transition times we obtained from table 5.1.

We can see that the competitive ratio is always maximized at the transition time, and that the

competitive ratio decreases when the standby time diverges away from any transition time. The

competitive ratio will continue to decrease until the standby reaches the next transition time. Now

we will show the optimal transition times for various sets of idle and power up costs in the following

tables.

31

www.manaraa.com

i a d x CR a d x CR

0 1.0000 0.0000 0.0000

1.701

0.0000 1.0000 0.0000

1.739

1 0.7500 0.2500 0.3566 0.6000 0.2000 0.2706

2 0.5000 0.5000 0.6195 0.4000 0.4000 0.4462

3 0.2500 0.7500 0.8277 0.2000 0.6000 0.6990

4 0.0000 1.0000 1.0001 0.0000 1.0000 2.0086

i a d x CR a d x CR

0 1.0000 0.0000 0.0000

1.775

1.0000 0.0000 0.0000

1.765

1 0.6000 0.1000 0.1290 0.7000 0.2000 0.2614

2 0.4000 0.3000 0.3744 0.3000 0.4000 0.4492

3 0.1000 0.6000 0.8256 0.1000 0.8000 1.5343

4 0.0000 1.0000 4.0083 0.0000 1.0000 2.0001

i a d x CR a d x CR

0 1.0000 0.0000 0.0000

1.7265

1.0000 0.0000 0.0000

1.724

1 0.8000 0.1000 0.1376 0.5500 0.2250 0.3108

2 0.5000 0.4000 0.4614 0.4000 0.4000 0.4598

3 0.1000 0.8000 0.9003 0.2500 0.6000 0.7678

4 0.0000 1.0000 2.0043 0.0000 1.0000 1.6000

Table 5.2: Optimal competitive ratio within θ = 0.01 for various a and d costs

5.3 Comparing three state machine to five state machine

In this section we compare the 5 state machine, with various power state costs, with the best known

1.8-competitive three state machine. Let us compare the five state machine from table 5.2 where

the competitive ratio is 1.701. The competitive ratios and power costs using the power states and a

range of idle times is shown in the following graphs.

32

www.manaraa.com

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

Figure 5.3: Costs for three state and five state

machines for CR = 1.8 and CR = 1.701

0 200 400 600 800 1000 1200
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.4: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.701

From figures 5.3 and 5.4, we can see the the three state machine has better costs and competitive

ratio except once the three state machine powers down to the off state, although there is a small

duration when it transitions to the intermediate state, after its x1 time, where it has a larger cost

but once the five state machine switches to state 2 (the five state machine at time x2), the five

state machine has a larger cost but ultimately the three state machine is worse than the five state

machine once it powers down. Once again from table 5.2, let us consider the five state machine has

parameters such that its competitive ratio is 1.739, the following graphs show the behavior.

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

Figure 5.5: Costs for three state and five state

machines for CR = 1.8 and CR = 1.739

0 500 1000 1500 2000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.6: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.739

33

www.manaraa.com

In figures 5.5 and 5.6, we see more situations when the five state machine has better costs and better

competitive ratios. Once again, the competitive ratio is worse for the three state machine for when

it transitions to the off state. However in this case, we have a bigger difference, compared to the

last example, in cost and competitive ratio at time 1, when the three state machine powers down.

Also in this example, there are more situations where the five state machine has better cost than

the three state machine. Now if we choose the the five state machine with competitive ratio 1.775,

we have the following costs.

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

Figure 5.7: Costs for three state and five state

machines for CR = 1.8 and CR = 1.775

0 500 1000 1500 2000 2500 3000 3500 4000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.8: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.775

We are seeing the same pattern emerge once again, the five state algorithm has better cost when

the three state machine powers down to the off state and when the five state algorithm is in state

3, in between x3 and x4, the five state machine has lower costs. There are some moments when the

five state machine has better cost than the three state at earlier times, but the greatest savings is in

the duration x3 to x4. The next schedule from 5.2, when the five state machine that has competitive

ratio 1.765, we have the following:

34

www.manaraa.com

0 500 1000 1500 2000 2500 3000 3500
0.0

0.5

1.0

1.5

2.0

Figure 5.9: Costs for three state and five state

machines for CR = 1.8 and CR = 1.765

0 500 1000 1500 2000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.10: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.765

In figures 5.9 and 5.10, we see that there are more savings intervals than in previous examples.

From time x2 and beyond (x2 that was calculated in the five state system), the five state machine

has a better cost than the three state machine. Although the savings seems to be greater in the

duration when the three state machine is in the off state and the five state machine is in state 3 (the

state right before off state). The next example is when the five state machine has competitive ratio

1.7265 from table 5.2, and we have the following figures:

0 500 1000 1500 2000 2500 3000 3500
0.0

0.5

1.0

1.5

2.0

Figure 5.11: Costs for three state and five state

machines for CR = 1.8 and CR = 1.7265

0 500 1000 1500 2000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.12: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.7265

35

www.manaraa.com

In this example, we see a similar pattern as with the last example. Now we will see how the costs

and competitive ratios look between the three state and five state machine with competitive ratio

1.724 from table 5.2.

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

Figure 5.13: Costs for three state and five state

machines for CR = 1.8 and CR = 1.724

0 500 1000 1500 2000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.14: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.724

Based on the best known three state cost algorithm and several five state algorithms used in the

section, we can see that introducing extra states can be beneficial. Also we see that the five state

algorithm has a favorable cost and competitive ratio once the three state machine transitions to the

off state and usually the five state machine is in some higher power state other than off state. If the

request arrives after the three state machine powers down to the off state and the request arrives

between x3 and x4 (or in some cases x2 and x4), the five state machine will save power, and the

difference of competitive ratio is increasing, since the competitive ratio of the five state system is

decreasing in that interval as seen in Figure 5.14.

5.4 Comparing three state machine to five state machine where we in-

crease its competitive ratio

In this section we will analyze the cost and competitive ratio of the five state machines with the

three state machines, with increased competitive ratios of the five state machines. In the previous

examples, we used five state machines with 1.701, 1.739, 1.775, 1.765, 1.7265, and 1.724 from table

5.2, here we will increase the competitive ratio to 1.8 in each system which will adjust the values for

x1, x2, x3, and x4. In this scenario, both the three state machine and the five state machines that

36

www.manaraa.com

is used in this analysis are both be 1.8-competitive. We first adjust the five state machine that is

1.701-competitive to 1.8-competitive, the following figures will show the costs and the competitive

ratios.

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

Figure 5.15: Costs for three state and five state

machines for CR = 1.8 and CR = 1.701 raised to

1.8

0 500 1000 1500 2000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.16: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.701

raised to 1.8

We can see that the five state machine with the same competitive ratio has lower costs than the

three state machine when it is in the off state. Here once they are both in the off state, they will have

the same cost since they have the same competitive ratio. We see that the five state competitive

ratio has a moment where it is increasing right before it transitions to the off state. This is due

to the fact that the five state system is not optimal when we set the competitive ratio to 1.8 when

calculating the transition times. However we can see some savings from x3 to x4 when we raise

the competitive ratio to 1.8. Now we will increase the five state machine from table 5.2 which has

competitive ratio 1.739 and we will also increase the competitive ratio to 1.8.

37

www.manaraa.com

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

Figure 5.17: Costs for three state and five state

machines for CR = 1.8 and CR = 1.739 raised to

1.8

0 500 1000 1500 2000 2500 3000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.18: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.739

raised to 1.8

From figures 5.17 and 5.18, we see similar behavior when the five state machine was 1.739

competitive. The five state machine with the same competitive ratio had better performance when

the three state machine powered down. Let us take a look at the rest of the examples when the five

state machines with competitive ratio 1.775, 1.765, 1.7265, and 1.724 from table 5.2 is raised up tp

1.8-competitive.

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

Figure 5.19: Costs for three state and five state

machines for CR = 1.8 and CR = 1.775 raised to

1.8

0 1000 2000 3000 4000 5000
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.20: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.775

raised to 1.8

38

www.manaraa.com

0 500 1000 1500 2000 2500 3000 3500
0.0

0.5

1.0

1.5

2.0

Figure 5.21: Costs for three state and five state

machines for CR = 1.8 and CR = 1.765 raised to

1.8

0 500 1000 1500 2000 2500 3000 3500
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.22: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.765

raised to 1.8

0 500 1000 1500 2000 2500 3000 3500 4000
0.0

0.5

1.0

1.5

2.0

Figure 5.23: Costs for three state and five state

machines for CR = 1.8 and CR = 1.7265 raised

to 1.8

0 500 1000 1500 2000 2500 3000 3500
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.24: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.7265

raised to 1.8

39

www.manaraa.com

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

Figure 5.25: Costs for three state and five state

machines for CR = 1.8 and CR = 1.724 raised to

1.8

0 500 1000 1500 2000 2500
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.26: Competitive ratio for three state and

five state machine for CR = 1.8 and CR = 1.724

raised to 1.8

In conclusion, considering our simulations, we can say that we get the same pattern that if the

request arrives after the three state machine powers down and before the five state machine powers

down, the five state machine has better results, its competitive ratio is smaller. However, before the

three state machine powers down, whether or not we raise the five state machine to 1.8-competitive,

the two systems have similar costs and competitive ratio where the three state machine seems to

have the slight advantage. However when we do not raise the competitive ratio to 1.8 for the five

state systems, we seem to have a favorable competitive ratio for more slack systems, when requests

arrive after x2 (the x2 used in the three state machine), and the five state machine has no real

advantage for busier systems, when the requests arrive before x2 (the x2 used in the three state

machine).

40

www.manaraa.com

Chapter 6

Continuous State Problem

In the continuous state problem, we choose transition times from a higher power state to a lower

power state according to a continuous function for the idle costs and for the power up costs, in our

analysis we choose an idle cost curve a(r) = 1 − ra and a power up cost curve d(r) = crd where

r ∈ [0, 1] is the power state and a, d, c > 0 are control parameters. Here we use assign a = 3, d = 5,

c = 1.5, and r is the power state being used. Figure 6.1 shows the two curves.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Figure 6.1: a(r) and d(r) curves

Using the two curves, we will develop a strategy for the online and offline model as to when

to switch to lower power states while idling. As with the discrete model, the power state of the

offline algorithm can chosen as soon as we have the idle period since the value of r will be known

in advance, since we choose the state at the beginning of the idle period, we can simply take the

derivative of a(r) + d(r) and obtain the function StategyOFF(r) = (a·rd·c)
1

d−a which will determine

41

www.manaraa.com

the state for the offline algorithm to be optimal. As with the discrete model, we computed the time

when both the online and offline algorithm is in the OFF state, for the continuous model the time

when the machine powers down is xm = c·d
a , we derive this result from

(a · xm
d · c

) 1
d−a

= 1 (6.1)

axm
C · d

= 1 (6.2)

xm =
c · d
a

(6.3)

As with the discrete model, the online algorithm will start from its initial state and will tran-

sition to lower power states until the next request arrives, in our first experiment, we will have

StrategyONLINE(r) = StrategyOFF(r), which will be a continuous version of the lower envelope algo-

rithm. The cost of the offline algorithm will be CostOFF(r) = r·a(StrategyOFF(r))+d(StrategyOFF(r))

and the cost of the online algorithm will be CostONLINE(r) =
∫ r

0
a(StrategyONLINE(r))dr+d(StrategyONLINE(r)).

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

3.0

Figure 6.2: Cost of OPT and ONLINE

50 100 150 200 250

1.2

1.4

1.6

1.8

2.0

Figure 6.3: Competitive ratio

We see that the competitive ratio shown in Figure 6.3 shows the competitive ratio growing as

the idle time increases and at time xm = 2.5 the competitive ratio is 2, which is consistent with the

discrete lower envelope algorithm. As we saw with the 3 state problem, we can adjust the switch

times to earlier values than the time chosen by the lower envelope algorithm to obtain a better

competitive ratio, we choose the following strategy for the online algorithm

Strategyt,z(r) = StategyOFF(r) + StrategyOFFLINE(r)z+t − StrategyOFFLINE(r)1+z (6.4)

where the values of t and z determine the rate at which the online strategy changes its power

states. When we decrease the value of t and z, the online algorithm transitions to a lower power

42

www.manaraa.com

state rapidly, but when we decrease the values of t and z, the online strategy transitions to a lower

power state less rapidly. The value of t intensives the behavior more than the value of z. We show

a few examples.

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.4: OPT and Online strategies for t =

0.312, z = 0.1

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.5: OPT and Online strategies for t =

0.412, z = 0.1

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.6: OPT and Online strategies for t =

0.512, z = 0.1

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.7: OPT and Online strategies for t =

0.612, z = 0.1

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.8: OPT and Online strategies for t =

0.712, z = 0.1

43

www.manaraa.com

In figures 6.4, 6.5, 6.6, 6.7, and 6.8 we see the differences between the offline and online schedules.

As we increase the value of t, we see that the online strategy decreases the rate at which it transitions

to lower power states. Let us see the costs for the strategies.

50 100 150 200 250

0.5

1.0

1.5

2.0

Figure 6.9: Cost of OPT and Online for t =

0.312, z = 0.1

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.10: Cost of OPT and Online for t =

0.412, z = 0.1

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.11: Cost of OPT and Online for t =

0.512, z = 0.1

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.12: Cost of OPT and Online for t =

0.612, z = 0.1

44

www.manaraa.com

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.13: Cost of OPT and Online for t =

0.712, z = 0.1

We see that when t is larger, the costs at the beginning of the idle duration of both the online and

offline algorithm are similar. As the idle duration increases, the cost for a higher t value increases

the cost of the online algorithm. Let us see the competitive ratio of the strategies.

50 100 150 200 250

1.45

1.50

1.55

1.60

Figure 6.14: Competitive ratio t = 0.312, z = 0.1

50 100 150 200 250

1.2

1.3

1.4

1.5

1.6

Figure 6.15: Competitive ratio t = 0.412, z = 0.1

50 100 150 200 250

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6.16: Competitive ratio t = 0.512, z = 0.1

50 100 150 200 250

1.2

1.4

1.6

1.8

Figure 6.17: Competitive ratio t = 0.612, z = 0.1

45

www.manaraa.com

50 100 150 200 250

1.2

1.4

1.6

1.8

Figure 6.18: Competitive ratio t = 0.712, z = 0.1

The competitive ratio curves are consistent with the cost curves the cost and the competitive

ratio of the online algorithms using the strategy with smaller t values has a smaller competitive ratio.

When t is larger, then the rate at which the online algorithm changes states is similar to that of

the offline algorithm strategy, and hence the behavior is similar to the LEA, where the competitive

ratio initially has a smaller value at the beginning but then increases as the idle duration increases,

however if the online strategy transitions at a faster rate than the offline algorithm, we obtain

favorable results for the competitive ratio. Now we adjust the z values and observe the results.

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.19: OPT and Online strategies for t =

0.312, z = 0.2

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.20: OPT and Online strategies for t =

0.312, z = 0.3

46

www.manaraa.com

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.21: OPT and Online strategies for t =

0.312, z = 0.4

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.22: OPT and Online strategies for t =

0.312, z = 0.9

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.23: OPT and Online strategies for t =

0.312, z = 1.1

Similar to our earlier experiments, when z increases the online strategy is similar to the offline

algorithm strategy. However, the z does not influence the strategy to change as much as the t value,

in other words, the value of z needs to be increased by a larger amount than the t value to notice a

difference in the strategy. Let us observe the costs generated by the strategies.

47

www.manaraa.com

50 100 150 200 250

0.5

1.0

1.5

2.0

Figure 6.24: Cost of OPT and Online for t =

0.312, z = 0.2

50 100 150 200 250

0.5

1.0

1.5

2.0

Figure 6.25: Cost of OPT and Online for t =

0.312, z = 0.3

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.26: Cost of OPT and Online for t =

0.312, z = 0.4

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.27: Cost of OPT and Online for t =

0.312, z = 0.9

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

Figure 6.28: Cost of OPT and Online for t =

0.312, z = 1.1

48

www.manaraa.com

50 100 150 200 250

1.35

1.40

1.45

1.50

1.55

1.60

Figure 6.29: Competitive ratio t = 0.312, z = 0.2

50 100 150 200 250

1.1

1.2

1.3

1.4

1.5

1.6

Figure 6.30: Competitive ratio t = 0.312, z = 0.3

50 100 150 200 250

1.1

1.2

1.3

1.4

1.5

1.6

Figure 6.31: Competitive ratio t = 0.312, z = 0.4

50 100 150 200 250

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6.32: Competitive ratio t = 0.312, z = 0.9

50 100 150 200 250

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6.33: Competitive ratio t = 0.312, z = 1.1

Similar to the last experiment, as we increase z, the online and offline strategies are transitioning

at the same rate to lower states, and the cost and competitive ratio is increasing and behaving similar

to the lower envelope algorithm. We further analyze the continuous state machine for other functions

for the online strategy, we have StrategyLinear(r) = r/xm, Strategyln(C, r) = ln (Cr)/ ln (Cxm + 1),

and Strategye(C, r) = (eCr − 1)/(eCxm − 1).

49

www.manaraa.com

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.34: Strategy Linear Function

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.35: Strategy Strategyln(200, r)

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.36: Strategy Strategyln(106, r)

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.37: Strategy Strategye(1, r)

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

Figure 6.38: Strategy Strategye(5, r)

In the above figures, we have strategies, the linear function in Figure 6.34 and the exponential

functions in Figures 6.37 and 6.38the online strategies are transitioning to the lower power states at

slower rates than the offline algorithm, and Figures 6.35 and 6.36 we have strategies that transition

to lower power states at faster rates than the offline algorithm, similar to the last experiment. Let

us analyze the costs for the strategies.

50

www.manaraa.com

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

3.0

Figure 6.39: Cost Linear Function

50 100 150 200 250

0.5

1.0

1.5

2.0

Figure 6.40: Cost Strategyln(200, r)

50 100 150 200 250

0.5

1.0

1.5

Figure 6.41: Cost Strategyln(106, r)

50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 6.42: Cost Strategye(1, r)

50 100 150 200 250

1

2

3

4

Figure 6.43: Cost Strategye(5, r)

We can see in this case, when the online strategies are transitioning to lower power states at a

slower rate than the offline algorithm, the cost at the beginning of the idle period is smaller and as

the idle time increases, the online costs are increasing, and their costs are larger than the strategies

that are changing to lower power states at faster rates, in those strategies, the online cost is larger

but does not increase the cost at such a rate as the strategies that are transitioning at a slower rate.

Let us observe the competitive ratio of the strategies.

51

www.manaraa.com

50 100 150 200 250

1.2

1.4

1.6

1.8

2.0

2.2

Figure 6.44: Competitive Ratio Linear Function

50 100 150 200 250

1.35

1.40

1.45

1.50

1.55

Figure 6.45: Competitive Ratio

Strategyln(200, r)

50 100 150 200 250

1.5

2.0

2.5

3.0

3.5

Figure 6.46: Competitive Ratio

Strategyln(106, r)

50 100 150 200 250

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 6.47: Competitive Ratio Strategye(1, r)

50 100 150 200 250

1.2

1.4

1.6

1.8

2.0

Figure 6.48: Competitive Ratio Strategye(5, r)

The competitive ratio curves show that the strategies that transition at slower rates have better

competitive ratios than strategies that transition at a faster rate but at the end of the idle duration

the faster transitioning strategies have better competitive ratios and thus their competitive ratios

are overall smaller. The conclusion that we can see for the infinite state problem is that if we want to

52

www.manaraa.com

have a lower competitive ratio, the online algorithm needs to use a strategy such that it transitions

to lower power states at a faster rate than strategy used by the offline algorithm.

53

www.manaraa.com

Chapter 7

The Decrease and Reset Algorithm

7.1 Details

In this chapter, we introduce the decrease and reset algorithm which allows the system to adjust its

wait time based on how our system is used. For the two state power down problem, it is proven to be

2-competitive which is the minimal competitive ratio which we call OWCR which we saw in chapter

2. We introduce the decrease and reset algorithm (DRA) in our papers [8, 14] and another paper

to be published titled Decrease and Reset for Power Down, to the Theoretical Computer Science

journal. The concept of DRA is to increase the competitive ratio slightly by some ε > 0, which

allows us to generate a spectrum of algorithms. For instance if each request in σ arrive after β/α

time units, the OWCR strategy obtains the worst case cost since it could have powered down earlier

to save energy. Suppose if an algorithm would decrease its wait time after every request that arrives

after β/α time units, which we will call a slack request, and we would increase the wait time if a

request arrives at or before β/α, which is a busy request. The cost of that algorithm would be less

than the cost of OWCR in that situation if it powers down earlier on a slack request. We have an

infinite non-decreasing non-negative sequence x1, x2, x3,... which are idle times that are assigned

to the idle periods. The sequence of requests σ, which was introduced in chapter 2. The following

piecewise function is used to determine which xi will be used for the idle time after the ith request.

f(i) =

f(i− 1) + 1 if ri − ri−1 ≥ β/α and i 6= 1

1 otherwise

So at request i, the wait time for the machine will be xf(i) and f(i) will select the wait time from

the infinite sequence. The behavior of DRA is after a request has been processed by the machine, if

that request is a slack request, the wait time used for the next request is the next xi in the sequence,

54

www.manaraa.com

which decreases the wait time for the next request. This pattern continues as long as each request

is a slack request. However, if a request is a busy request, then the wait time gets adjusted to the

first value in the infinite sequence x1. For the remainder of the chapter, α = 1 and for most of the

analysis we will also have β = 1 just to normalize the maximum wait time to β or 1 respectively, to

simplify the equations.

Lemma 7.1.1. RDRA ≤ 1 + β/x1.

Proof. For a given sequence σ = r1, r2, r3, ..., rm, we assume that all of these requests arrive after x1

time units between each other. It is simple to see that the competitive ratio for m requests will be:

RDRA(σ) ≤ m(x1 + β)

mx1
= 1 +

β

x1
(7.1)

In this case since every request arrives after x1 time units, DRA will never decrease its wait time,

it will never switch to xi where i > 1 since x1 < β/α. In the offline model it is known that each

request arrives exactly after x1 time units so the machine will never power down, and hence the

above competitive ratio is achieved. It is clear that the value of x1 determines the value of the upper

bound. If x1 = β/α, then this instance of the DRA is OWCR with a competitive ratio of 2.

Lemma 7.1.2. The worst case cost for DRA occurs when the last request is a busy request

Proof. First we will examine the competitive ratio for one request. The online cost will always be

x1 + β. For a busy request the offline cost will be x1 and β for a slack request. So the competitive

ratio for a busy request will be 1 + β
x1

and for a slack request will be 1 + x1

β . If x1 = β then both

would yield a 2-competitive upper bound but since ε > 0, x1 < β. Therefore for any possible x1

value, x1

β < β
x1

. Now we consider two identical blocks of length l−1 and then we will branch off two

directions, one where the lth request will be a busy request and the other will be a slack request.

So the two blocks will be identical except for the last request, so only the last request needs to

be examined. The cost of the online and offline algorithms before request l will be Costonline and

Costoffline respectively. So the competitive ratio if the lth is busy and slack will be

CRbusy =
Costonline + xl + β

Costoffline + xl

CRslack =
Costonline + xl + β

Costoffline + β

Notice that the online cost never changes no matter the type of the last request, busy or slack. As

for the offline cost, xl < β, so the offline cost is less when the lth request is busy making the ratio

larger, and when the last request is slack, the offline cost is β more which is larger than xl which

makes the ratio smaller compared to the busy competitive ratio. Which means the competitive ratio

is maximized when the last request is busy in any given block.

55

www.manaraa.com

Lemma 7.1.3. For an integer k, RDRA ≤
kβ+

∑k
i=1 xi

(k−1)β+xk

Proof. From lemma 7.1.2, the worst case is when the last request is a busy request. We will divide

each block in which the kth request is busy and all k− 1 requests will be slack. The online cost will

be simply
∑k
i=1(xi + β) = kβ +

∑k
i=1 xi. The offline cost will be (k − 1)β + xk since in the offline

sense, the machine will power down immediately after each request before k and only at the kth

request will the machine stay on for xk time units. There can be up to m blocks, or in other words,

m busy requests.

RDRA ≤
m

(
kβ +

∑k
i=1 xi)

)
m

(
(k − 1)β + xk)

) =
kβ +

∑k
i=1 xi

(k − 1)β + xk
(7.2)

We can set equation 7.2 to 2 + ε to compute the values of xi.

kβ +
∑k
i=1 xi

(k − 1)β + xk
≤ 2 + ε (7.3)

If we solve for xk, we have

xk ≥
1

(1 + ε)

(
(2 + ε)β +

k−1∑
i=1

xi

)
− kβ

As one can see, this will be a recurrence relation. We can use elementary induction to obtain a

closed form to compute any xk value. In order to get a closed form we will rewrite equation 7.3 in

the following way:

kβ +

k∑
i=1

≥ (2 + ε)(k − 1)β + xk(2 + ε) (7.4)

We can substitute k + 1 for k in equation 7.4 and take the difference from 7.4 to obtain:

β + xk ≥ (2 + ε)β + (2 + ε)(xk − xk−1)

Now we can reach the following recurrence:

xk ≥
(

2 + ε

1 + ε

)
xk−1 − β

The recurrence can be solved to reach

xk ≥ −ε

(
2 + ε

1 + ε

)k
β + (1 + ε)β (7.5)

As long as all xi satisfy equation 7.5, then DRA will be (2 + ε)-competitive. If we let ε be an

arbitrarily small constant (ε < 0.1), the competitive ratio will not be much worse than that of the

56

www.manaraa.com

OWCR. The real power of the DRA is that we can taper down the wait times if we have slack

requests without increasing the competitive ratio by much. This allows us to save power without

increasing the competitive ratio by much, since power is saved after each request since the wait times

iteratively become smaller for slack requests. In [14], we introduce the term slack degree which is

used to compute the competitive ratio. For each request in σ we can count all the busy and slack

requests which will be denoted as b(σ) and s(σ) respectively. The slack degree d(σ) will simply be

the ratio between slack and busy requests, d(σ) = s(σ)/b(σ) ≥ d (b(σ) 6= 0). The slack degree d(σ)

is the maximum d value that satisfies s(σ)/b(σ).

Lemma 7.1.4. The competitive ratio for DRA for long input σ with a slack degree d > 0 and with

xi values satisfying inequality 7.5 will be

RDRA(σ) ≤ 1 +
1

d
+

∑∞
i=1 xi
dβ

Proof. We first will have n sequences. The sequences will be labeled as σ1, σ2,...,σn. For each block

σi, there will be i − 1 slack requests and the ith request, the last request of the block, will a busy

request. So the online cost for σ1, σ2,...,σn will be β +
∑n
i=1{

∑f(i)
j=1(xi + β)}+ x1. One can see that

f(i) = i for every i. The offline algorithm will power off for every slack request and only remain idle

for the last request in the block, this behavior will occur for each block, so the offline cost will be

β +
∑n
i=1 xf(i) +

∑n
i=1(f(i)− 1)β

RDRA(σ1, σ2, ..., σn) =
β +

∑n
i=1{

∑f(i)
j=1(xi + β)}+ x1

β +
∑n
i=1 xf(i) +

∑n
i=1(f(i)− 1)β

≤
β +

∑n
i=1

∑f(i)−1
j=1 xj +

∑n
i=1 f(i)β + x1

β +
∑n
i=1(f(i)− 1)β

≤
β +

∑n
i=1 xi +

∑n
i=1(f(i)− 1)β + βn+ x1

β +
∑n
i=1(f(i)− 1)β

Since each block ends with a busy request, there will be n busy requests and
∑n
i=1(f(i)−1) represents

the number of slack request, and thus
∑n
i=1(f(i) − 1)/n = s(σ)/b(σ) ≥ d, after applying this

substitution we have:

≤
β + n

∑n
i=1 xi + ndβ + βn+ x1

β + ndβ

≤ 1 +

∑n
i=1 xi + β + x1/n

dβ + β/n

Now we can set n→∞ and we have

RDRA = 1 +
1

d
+

∑∞
i=1 xi
βd

57

www.manaraa.com

Theorem 7.1.5. The competitive ratio of DRA is

RDRA = min

{
1 +

1

d
+

∑∞
i=1 xi
dβ

, 2 + ε

}
Proof. From equation 7.5, if we set each delay time to

xi =


−ε

(
2+ε
1+ε

)i
β + (1 + ε)β if xi > 0

0 otherwise

The taper down values for xi will cause the DRA to be 2 + ε competitive since the xi values were

derived by setting the competitive ratio to 2 + ε as shown in inequality 7.3. Lemma 7.1.4, shows

the competitive ratio if the system is d-slack. And so, there are two possible competitive ratios, if a

busy request occurs in the sequence, the competitive ratio will be 2 + ε from 7.2 and if the system

is d-slack, lemma 7.1.4 shows the competitive ratio for that situation.

7.2 Budget Based Taper Down Algorithm for Two State Machine

We will see this approach for the three state machine in later chapters, here we consider an alternative

approach to taper down the delay times using a budget. As we know, for the two state power down

problem, the best algorithm we can have is 2-competitive. If we use a budget to taper down, we get

the following equation

α · xbudget + β − b
xbudget

= 2(1 + ε) (7.6)

xbudget =
β − b

α(2ε+ 1)
(7.7)

in equations 7.6 and 7.7, xbudget will be the taper down wait time and xbudget ≤ β/α will always

hold and thus the competitive ratio will be increased to 2(1 + ε), similar to the DRA. Initially the

budget will be set to 0, and the budget b is adjusted throughout the course of the execution of the

algorithm. We can have a cost curve

Cost(x,RequestDelayTime) =

αx if x < RequestDelayTime

αx+ β if x ≥ RequestDelayTime

where x is the wait time the machine will stay idle and RequestDelayTime is the actual wait

time between requests. We update the budget after each request

b = Cost(β/α,RequestDelayTime)− Cost(xbudget,RequestDelayTime)

58

www.manaraa.com

We take the difference of the cost of using β/α as the wait time with xbudget as the wait time.

The budget b is the energy saved when we tapered down, and if the budget increases the wait time

decreases and when the budget decreases the wait time increases. If the value of b < 0, at some

point, we adjust b = 0 which is the initial budget. If using xbudget yields some savings then we taper

down, similarly to the DRA if the request is a slack request the algorithm will have a smaller delay

time for the next request. If we have a slack system, when we have several requests that arrive

after β/α, and we power down before β/α, we will save power. This is the goal of the DRA and

this budget based taper down algorithm. We will show experimental results of the budget based

algorithm and DRA for two state and three state machines in chapter 10.

59

www.manaraa.com

Chapter 8

Three State Decrease and Reset

Algorithm

As shown earlier, we analyzed the decrease and reset algorithm (DRA), and with the DRA, we saw

the we could increase the competitive ratio slightly and taper down the wait times depending on

the slackness of the system. We saw that if we have a third state that we called INT added to the

2 state system, we reached a better upper bound of 1.8 than that of the 2 state machine which was

2-competitive. In this chapter, we combine the concepts of the three state model with the DRA .

Let u1, u2, u2, ... be an infinite sequence of standby times in the ON state and let q1, q2, q3, ... be an

infinite sequence of standby times in the INT state. So ui is the duration of the machine in the ON

state and qi is the duration in the INT state and after ui + qi time units the machine switches to

the OFF state. Since this will be a three state machine, there are two switch times when we have

the worst case cost which occurs immediately at the switch times. So we have two equations that

we will use to compute these times.∑k−1
i=1 (ui + aqi + 1) + uk + d∑k−1

i=1 1 + uk
= CR+ ε (8.1)

∑k−1
i=1 (ui + aqi + 1) + uk + aqk + 1∑k−1

i=1 1 + uk + qk
= CR+ ε (8.2)

Equation (8.1) is used to compute uk after k−1 slack requests, and that uk value is used to compute

qk in equation (8.2). In the two equations, it is assumed that for state INT, a+ d ≥ 1, which can be

seen by the offline cost since constants a and d are absent in the offline cost. Similarly to the 2 state

DRA, we increase the competitive ratio by a small constant ε, and we attempt to taper the standby

60

www.manaraa.com

duration of the ON and INT state after every slack request, a request that occurs after ui + qi, and

the durations reset back to u1 and q1 otherwise. So if we solve for uk and qk, we get

uk = max

{
r(k − 1)−

∑k−1
i=1 (ui + aqi + 1)− d

1− r
, 0

}
(8.3)

qk = max

{
r(k − 1) + uk(r − 1)−

∑k−1
i=1 (ui + aqi + 1)− 1

a− r
, 0

}
(8.4)

In (8.3) and (8.4), we substitute r = CR + ε, so r will denote the increased competitive ratio

which is the result of applying the DRA to a system. Since the value of uk from (8.3) is needed to

compute the value of qk in (8.4), if we assume that uk > 0, then we get:

qk =
1− d
r − a

(8.5)

So qk does not taper down as long as uk > 0. Initially, only the duration of the ON state will

taper after each slack request while the duration of the machine in state INT does not change.

When uk = 0, several slack requests have arrived consecutively, and then the value of qk will begin

tapering down. We will obtain a closed form for uk, as was done for the two state system. We can

derive (8.1) to have

k−1∑
i=1

ui + a

k−1∑
i=1

qi − (1− r)uk = (r − 1)(k − 1)− d (8.6)

Since we know that if any ui > 0, then the values for qi will never taper down so we can substitute

qi = 1−d
r−a and then we have

k∑
i=1

ui − ruk = (r − 1)k − r + (r − ak)
1− d
r − a

(8.7)

Now we can simply substitute k = k − l in (8.7) to have

k−1∑
i=1

ui − ruk−1 = (r − 1)(k − 1)− r + (r − a(k − 1))
1− d
r − a

(8.8)

If we subtract (8.8) from (8.7) we have the following recurrence

(1− r)uk + ruk−1 = (r − 1)− a1− d
r − a

(8.9)

Let us substitute the right hand side to φ = (r − 1)− a 1−d
r−a

uk − φ =
r

r − 1
(uk−1 − φ) (8.10)

In (8.10), we can see that (r)/(r − 1) is multiplied k times so we can rewrite (8.10)

uk − φ =

(
r

r − 1

)k−1

(u1 − φ) (8.11)

61

www.manaraa.com

From equation (8.3) from the last section, we can compute u1 = d/(r − 1), substitution that for u1

we obtain

uk = max

{(
r

r − 1

)k−1

(d/(r − 1)− φ) + φ, 0

}
(8.12)

For all i < l if ui > 0, then we know that qi does not change, let l be an index such that ul = 0

and ul−1 > 0, which can be computed from (8.12), so the index l is the first instance such that the

duration becomes zero, in which this case the value of ql ≤ ql−1 and this holds for all indices larger

than l. So we will derive a formula for the tapering values for qk, similar to how we derived the

formula for uk, we will start by deriving (8.2) by replacing k with l

l∑
i=1

ui + a

l∑
i=1

qi − rul − rql = r(l − 1)− l (8.13)

As done earlier, we will substitute l = l − 1

l−1∑
i=1

ui + a

l−1∑
i=1

qi − rul−1 − rql−1 = r(l − 2)− l + 1 (8.14)

Once again we subtract (8.13) from (8.14)

ul + aql + r(ul−1 − ul) + r(ql−1 − ql) = r − 1 (8.15)

So as we assumed before, ul = 0 so we make that substitution into (8.15)

aql + rul−1 + r(ql−1 − ql) = r − 1

ql =
r − 1− r(ul−1 + ql−1)

a− r
(8.16)

This ql from (8.16), will be used to solve the recurrence for ql values. In order to derive this formula,

we will begin with (8.15) which was obtained by subtracting (8.13) from (8.14). We will substitute

l for t and t ≥ l, so we have

aqt + rqt−1 − rqt = r − 1 (8.17)

The difference between (8.17) and (8.15) is that in this case both ut = 0 and ut−1 = 0 since t > l

in which at this point ul = 0 and ul+1 = 0 must be true and t > l so ut = 0 and ut−1 = 0 must be

true as well. Now when we solve for qt, we have the following recurrence

qt =
r − 1

a− r
+

(
r

r − a

)
qt−1 (8.18)

Let us substitute χ = r
r−a , when we solve the recurrence we have

qt = max

{
χt−lql +

(
r − 1

a− r

)(
χt−l − 1

χ− 1

)
, 0

}
(8.19)

62

www.manaraa.com

ε = 0.001 ε = 0.01 ε = 0.1

u q u q u q

0.4993 0.4996 0.4938 0.4959 0.4444 0.4615

0.4970 0.4996 0.4708 0.4959 0.2460 0.4615

0.4918 0.4996 0.4193 0.4959 0 0.3417

0.4799 0.4996 0.3044 0.4959 0 0

0.4534 0.4996 0.0474 0.4959

0.3936 0.4996 0 0.1433

0.2591 0.4996 0 0

0 0.4708

0 0.0390

0 0

Table 8.1: Three State Taper Down Values for a = 0.6 and d = 0.4, CR = 1.8

ε = 0.001 ε = 0.01 ε = 0.1

u q u q u q

0.9450 0.0540 0.9361 0.0537 0.8560 0.0512

0.9430 0.0540 0.9155 0.0537 0.6751 0.0512

0.9386 0.0540 0.8733 0.0537 0.3220 0.0512

0.9298 0.0540 0.7873 0.0537 0 0

0.9117 0.0540 0.6118 0.0537

0.8747 0.0540 0.2538 0.0537

0.7988 0.0540 0 0

0.6433 0.0540

0.3244 0.0540

0 0

Table 8.2: Three State Taper Down Values for a = 0.1 and d = 0.9, CR = 1.951

In table 8.1, we see the taper down values after every slack request for various ε values. As

already stated, when the q values are above 0, the values for q do not change, once the value for

u becomes 0, the value of q becomes 0 after only 1 extra slack request. When ε = 0.001 it takes

two extra slack requests for q to become 0, since ε is arbitrarily small. We use a = 0.6 and d = 0.4

63

www.manaraa.com

because this produces the optimal competitive ratio for the case where a + d = 1. Let us examine

other a and d values as well. We can see in table 8.2, that when the value of a is closer to 0, the

values for q taper down to 0 at a more rapid pace once u becomes 0. In the previous table, it would

take q one or two steps to reach 0, once u becomes 0. Here once u becomes 0, q simultaneously

becomes 0. Let us look at a case when a is closer to 1 and d is closer to 0.

ε = 0.001 ε = 0.01 ε = 0.1

u q u q u q

0.1097 0.8893 0.1086 0.8815 0.0989 0.8101

0.1076 0.8893 0.0879 0.8815 0 0.7354

0.1032 0.8893 0.0448 0.8815 0 0.4212

0.0939 0.8893 0 0.8408 0 0

0.0746 0.8893 0 0.6799

0.0341 0.8893 0 0.3771

0 0.8436 0 0

0 0.6926

0 0.4073

0 0

Table 8.3: Three State Taper Down Values for a = 0.9 and d = 0.1, CR = 1.911

Here in table 8.3, we see that the values of q taper down to 0 after 4 extra slack requests for

smaller ε values to reach 0. Based on these 3 tables, we can see a trend that when a is arbitrarily

larger, the values of q taper down nicely, i.e. takes more steps to taper down to 0, compared to when

a is arbitarily smaller.

64

www.manaraa.com

Chapter 9

Three State Problem with

Reduced Delay Times

9.1 Analysis for Arbitrary Reduced Delay Times

In this chapter we develop a tapering down approach for the three state system which uses a budget

as seen in chapter 2. We first demonstrate a few techniques to taper the wait times down in such a

way where we decrease both the ON state duration as well as the INT state duration simultaneously,

and show how the competitive ratio adjusts, which will lead to a budget based approach. We decrease

x1 and x2 by some factor c, so the adjusted wait times are (1−c)x1 and (1−c)x2. Unlike with DRA,

the durations of the machine in the ON state and INT state will decrease, instead of the duration of

the ON state decreasing while the duration of the INT state remains unchanged unless the duration

in the ON state becomes 0. But with this taper down model of the three state problem, we have the

two competitive ratios CR′1 and CR′2 which denote the competitive ratios at (1− c)x1 and (1− c)x2

respectively. When we decrease the wait times, x1 and x2, the competitive ratios will increase.

Our goal is to have CR′1 = CR′2. The technique here will be to decrease x1 and x2 by (1 − c)

and compute their respective CR′1 and CR′2 values. If we decrease x1 and x2 by (1 − c), we could

situations where CR′1 6= CR′2, which we know is not optimal, let us take a look at the following

65

www.manaraa.com

0.05 0.10 0.15 0.20

1.90

1.95

2.00

2.05

2.10

Figure 9.1: Competitive ratios when the

wait times are decreased to (1−c)x1 and

(1− c)x2

0.05 0.10 0.15 0.20

1.90

1.95

2.00

2.05

2.10

Figure 9.2: Competitive ratios when the

wait times are decreased to (1−c)x1 and

(1− 1.3c)x2

0.05 0.10 0.15 0.20

1.90

1.95

2.00

2.05

2.10

Figure 9.3: Competitive ratios when the

wait times are decreased to (1−c)x1 and

(1− 1.7c)x2

Each of the figures show CR′1 and CR′2 as c increases. In Figures 9.1 and 9.2, CR′1 > CR′2. But

it can also be seen that Figure 9.2 the overall competitive ratio does not increase since CR′1 does not

change and CR′2 < CR′1 is still true by decreasing x2 by a larger factor than x1, and furthermore,

if x2 decreases by a factor of 1.7c then CR′1 = CR′2 which is shown in figure 9.3. By decreasing the

value of x2 by a factor of 1.7c, we can save power by powering down to the OFF state earlier while

not increasing the overall competitive ratio since CR′1 did not increase and CR′2 does not become

larger than CR′1. In this particular case, the INT state standby and power up costs are a = 0.45

and d = 0.3. A search was applied to find this factor, we can apply a better approach to decrease

x1 and x2 such that CR′1 = CR′2.

Suppose we have a factor c1 to decrease the wait time x1 and c2 to decrease the wait time x2.

We will have the following competitive ratio:

CR′1 = 1 +
d

x1(1− c1)

66

www.manaraa.com

CR′2 =
x1(1− c1) + a

(
x2(1− c2)− x1(1− c1)

)
+ 1

a
(
x2(1− c2)

)
+ d

Notice that the offline cost changes for CR2 since we are decreasing the wait time for x2 and

a
(
x2(1 − c2) − x1(1 − c1)

)
< 1. We set the equations equal to each other and we can solve for c2

which is:

c2 =
d2 + x1(c1 − 1)(1 + (a− 1)(c1 − 1)x1) + d(x1 − c1x1 + ax2)

adx2

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

Figure 9.4: Increase in c2 with respect to c1, a = 0.45 and d = 0.3

We choose a value for c1 and decrease x1 to (1 − c1) and if we use this c1 value to compute c2

and decrease x2 to (1 − c2)x2, we are guaranteed to have CR′1 = CR′2. Figure 9.4 shows that c1

does not always equal c2, and thus does not decrease x1 and x2 by the same rate in order for their

competitive ratios to be equal.

9.2 Gains Obtained for Various c1 Values

Using the c1 and c2 values, we decrease the wait times and this causes the competitive ratio increase.

This section will focus on energy gained by choosing various c1 and c2 and not focus on competitive

ratios. Let A be an online algorithm that does not decrease its wait times and let A′ be an algorithm

that adjusts the wait times to smaller values. So we can compute the gain obtained by A′ by simply

taking the difference, of the two algorithms with input sequence σ.

Power Gained = CostA(σ)− CostA′(σ)

So as long as the input sequence is not provided by the adversary we can have some savings

when a new request arrives. This depends on delay time between requests and the values of c1 and

c2, the following graphs show gains for various scenarios.

67

www.manaraa.com

0 500 1000 1500 2000

−1.0

−0.5

0.0

0.5

1.0

Figure 9.5: Gain for c1 = 0.05

0 500 1000 1500 2000

−1.0

−0.5

0.0

0.5

1.0

Figure 9.6: Gain for c1 = 0.10

0 500 1000 1500 2000

−1.0

−0.5

0.0

0.5

1.0

Figure 9.7: Gain for c1 = 0.25

0 500 1000 1500 2000

−1.0

−0.5

0.0

0.5

1.0

Figure 9.8: Gain for c1 = 0.50

a d x1 x2 c1 c2 Adjusted x1 Adjusted x2

0.45 0.3 0.338528 1.55556 0.05 0.0856855 0.3216016 1.42227106

0.45 0.3 0.338528 1.55556 0.10 0.16987 0.3046752 1.29131702

0.45 0.3 0.338528 1.55556 0.25 0.41342 0.253896 0.91246038

0.45 0.3 0.338528 1.55556 0.5 0.789322 0.169264 0.32772227

Table 9.1: Adjusted times

Figures 9.5, 9.6, 9.7, and 9.8 show the gains for various c1 and c2 values with a range of possible

request times. We can see that if we choose a smaller c1 and subsequently a smaller c2, the adjusted

68

www.manaraa.com

wait times do not decrease as much and hence we do not have much savings. Even though we do

not have a large gain, we do not have many moments of loss, in the general case, if a request arrives

between [(1 − c1), x1] and [(1 − c2)x2, x2] we see a loss. And in figure 9.1, since the adjusted wait

times are not much less than the original x1 and x2 values, the loss duration is minimal compared

to larger c1 and c2 values. When we have a larger c1 value as shown in figure 9.8, we get a larger

saving when a request arrives after x2 compared to the other figures when we have a smaller c1

value, however, for idle times from (1− c1)x1 to x2 we lose energy, so we have a higher reward but

with higher risk, when c1 = 0.05 we have lower risk but with lower reward.

0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

0.25

Figure 9.9: Gains for the adjusted wait times x1 and x2

In figure 9.9, we are computing the gains that we obtain with using the delay times x1 and x2

where the adjusted wait times give us a gain since the machine powered down to a lower power state

before the original x1 and x2 times. Using these wait times, we see that when we increase c1 we

obtain larger gains. We obtain larger gains when the requests arrive at x2 than when the requests

arrive at time x1. We can see that as c1 increases the gain increases at a larger rate at time x2 over

x1. This chooses c1 up to 0.2 in which we still have some gain at time x1.

So with this model we decrease the wait time in both durations, the duration in the ON state

and INT state, which the 3 state DRA did not achieve. However here, when we increase c1 the

competitive ratio increases as well. The goal for the tapering down approach is to decrease the wait

times while not increasing the competitive ratio, which the DRA does accomplish. So based on the

last request, we want to compute a different wait time. The DRA computed a new wait time based

on the value of ε and whether the next request was busy or slack, a slack request tapered down the

wait time and a busy request reset the wait time. We will apply a similar model to the DRA to

adjust the wait times rather than just choosing an arbitrary value for c1 to adjust the wait time and

competitive ratio.

69

www.manaraa.com

9.3 Using a Budget to Compute Optimal Wait Times

We were able to compute new delay times using a possible range of values for c1 and c2, we now

will use an alternative strategy to adjust the delay times. We will adjust the values for x1 and x2

based on the request times similarly to the DRA. This issue was well defined with DRA using ε and

using this ε value, we could simply compute the wait times based on the number of consecutive slack

requests. The goal here is to also given a set of requests σ, we would like to know what the wait

time will be when the (σ + 1)th arrives. For the model that has been analyzed in this chapter, we

use a budget to determine the next wait time. When we think of a budget, we think of how much

energy has been saved (if any) after σ requests and that will determine how long the idle time will

be when (σ + 1)th request arrives.

Initially the budget will be zero, at the beginning of the algorithm. Similarly to the DRA, we

will increase the competitive ratio by some small constant, this will force the wait time to be slightly

smaller than x1 or x2 at the start of the algorithm, when the budget is 0. We will denote y1 and y2

to represent the adjusted x1 and x2 times respectively.

y1 + d− b
y1 + d

= CR(1 + ε)

y1 = max

{
d− b

CR(1 + ε)− 1
, 0

}
(9.1)

Where CR is the competitive ratio for a 3 state system given a and d values, using equation 4.4.

We will denote b as the budget. Similarly to the DRA, we increase the competitive ratio by a factor

of (1+ε), so the idle time will initially be decreased. The idle time decreases as the budget increases,

the budget will be adjusted based on the gain or loss we get after the most recent request arrives.

The machine will switch to the INT state after y1 time units. Calculating the value of y2 is not as

trivial as calculating y1. There are two cases that need to be considered, if the machine powers down

after time xopt1 so y2 > xopt1 or if the machine powers down before xopt1 so y2 < xopt1 which are

likely scenarios if a+ d < 1 and in that case we must use a different optimal offline cost to compute

y2. The cost of the online algorithm will look the same in both instances, it will remain in the ON

state for y1 time units, and will stay in the INT state for y2 − y1 time units and will have a power

up cost from OFF to ON for when the request arrives. So its cost will be y1 + a(y2 − y1) + 1.

The cost of the offline algorithm will be min{ay2 +d, y2}. So based on the value of y2, the offline

algorithm will decide to stay idle for y2 time units in the INT state or the ON state to handle the

request. We will denote the two possible y2 values as y′2 and y′′2 for each of the two cases. It can be

seen that if y2 < xopt1 then clearly the offline cost used to compute y2 will y2 time units in the ON

70

www.manaraa.com

state, otherwise the offline cost will be ay2 + 1. For y′2 we have the following:

y1 + a(y′2 − y1) + 1− b
ay′2 + d

= CR(1 + ε)

y′2 = max

{
1− b− dCR(1 + ε) + y1(1− a)

aCR(1 + ε)− a
, 0

}
(9.2)

For y′′2 we have:
y1 + a(y′′2 − y1) + 1− b

y′′2
= CR(1 + ε)

y′′2 = max

{
1− b+ y1(1− a)

CR(1 + ε)− a
, 0

}
(9.3)

In both cases like with y1 from (9.1), when the wait times become negative, they get set to 0. The

issue here is when y′2 and y′′2 is computed, it is not trivial as to which value is the appropriate value

to choose for a given ε or budget value b. We have to be able to decide which y2 value is correct, i.e.

the y2 which used the minimal offline cost to compute that value. The way we calculate the budget

is to compute the gain or loss of using x1 and x2 transition times with these adjusted transition

times y1 and y2. Let us define a piecewise function that computes the worst case online cost

OnlineCost(X1, X2, request) =


X1 + d if request ≤ X1

X1 + a(request−X1) + d X1 < request < X2

X1 + a(X2 −X1) + 1 if request ≥ X2

where X1 and X2 will be the instant the machine transition from the on state to the intermediate

state, and the intermediate state to the off state respectively. The parameter request denotes the

next request time, so we can compute the gain

gain = OnlineCost(x1, x2, request)−OnlineCost(y1, y2, request)

The value of gain could be either positive or negative which denotes a gain or a loss and the

we accumulate this to the budget. If the value of b ever becomes negative, we simply reset it back

to 0, otherwise if we have some gain and the budget increases, then the value of y1 and y2 will be

decreased.

Lemma 9.3.1. Given a worst case transition time Y, if aY + d < Y, then y′2 > y′′2 must hold.

Proof. We will first consider the two equations:

y1 + a(y′2 − y1) + 1− b
ay′2 + d

= CR(1 + ε) (9.4)

71

www.manaraa.com

y1 + a(y′′2 − y1) + 1− b
y′′2

= CR(1 + ε) (9.5)

We will consider the delay time Y such that it satisfies equation (9.5). By substituting y′′2 with Y.

If we substitute this Y into (9.4), we have the following:

y1 + a(Y − y1) + 1−max{b, 0}
aY + d

> CR(1 + ε) (9.6)

Since the numerators in both (9.4) and (9.5) are identical, their values will be the same, and since

aY + d < Y, then the ratio in (9.6) substituting the formula with Y, the ratio must be larger than

CR(1 + ε). We can rewrite (9.6) to:

y1 + (aY − y1) + 1−max{b, 0}
aY + d

=
y1(1− a) + 1− b−max{b, 0}

aY + d
+ 1 > CR(1 + ε) (9.7)

Since we want to satisfy the above equation, we must choose another delay time which will be

denoted by Y ′. From (9.7), it is trivial that we must increase the value for Y to decrease its ratio

until the ratio equals CR(1 + ε), so Y ′ > Y. Therefore if we choose y′2 and y′′2 that satisfy their

respective equations and if ay′2 + d > y′′2 , then y′2 > y′′2 must hold.

Lemma 9.3.2. Given a worst case transition time Y, if aY + d > Y, then y′2 < y′′2 must hold.

Proof. As with lemma 9.3.1, we will use the following equations:

y1 + a(y′2 − y1) + 1−max{b, 0}
ay′2 + d

= CR(1 + ε) (9.8)

y1 + a(y′′2 − y1) + 1−max{b, 0}
y′′2

= CR(1 + ε) (9.9)

Once again, we choose a value Y that satisfies (9.9), by substituting y′′2 with Y. We will now

substitute y′2 with Y in (9.8), to have:

y1 + (aY − y1) + 1−max{b, 0}
aY + d

=
y1(1− a) + 1−max{b, 0} − d

aY + d
+ 1 < CR(1 + ε) (9.10)

Since our initial assumption was that aY + d > Y, then the equation (9.10), and the derived form

both have to be less than CR(1 + ε), since once again substituting y′2 and y′′2 with Y will have

identical numerators but the denominator in (9.10) will be larger based on our initial assumption so

this ratio must be less than CR(1 + ε). We again must choose a different value Y ′ such that (9.10)

equals CR(1 + ε). In order to increase the ratio, we need to pick a smaller value than Y so clearly

Y ′ < Y such that y′2 substituted with Y ′ that satisfies (9.9). So if we choose y′2 and y′′2 that satisfy

their respective equations and if ay′2 + d > y′′2 , then y′2 < y′′2 must hold.

72

www.manaraa.com

Lemma 9.3.3. Given xopt1 , for values y′2 and y′′2 , unless y′2 = y′′2 = xopt1 , they will both be greater

than or less than xopt1 .

Proof. We need to consider a few cases for this proof. As noted before for some delay Y, if aY+d < Y,

then Y > xopt1 and if aY+d > Y, then Y < xopt1 . For the first case, if y′′2 > xopt1 , then ay′2+d < y′′2

and according to lemma 9.3.1, y′2 > y′′2 and therefore y′2 > xopt1 so in this case y′2 > y′′2 > xopt1 so

both y′2 and y′′2 are greater than xopt1 . Now let y′′2 < xopt1 so therefore ay′2 + d > y′′2 . In this case,

lemma 9.3.2 proves that y′′2 > y′2 must hold and thus xopt1 > y′′2 > y′2 and therefore both y′2 and y′′2

both are less than xopt1 .

Those were the two trivial cases. Let us examine when y′2 < xopt1 , so ay′2 +d > y′′2 and therefore

we know that y′′2 > y′2. Let us assume the contrary that we compute y′′2 and y′′2 > y′2 still holds, but

y′′2 > xopt1 , so we have a scenario where y′′2 > xopt1 > y′2. This scenario can never happen because

if y′′2 > xopt1 then y′2 > y′′2 must hold according to lemma 9.3.1, so this leads to a contradiction.

For the last case, let y′2 > xopt1 so ay′2 + d < y′′2 and therefore y′2 > y′′2 . Let us say that when

y′′2 is computed, we get a value y′′2 < xopt1 so then we have the scenario y′2 > xopt1 > y′′2 , when

y′′2 < xopt1 , this implies that ay′2 +d > y′′2 must hold, according to lemma 9.3.2, if ay′2 +d > y′′2 then

y′′2 > y′2, so in this case when we have y′2 > xopt1 > y′′2 , we reach a contradiction because lemma

9.3.2 proves this cannot happen. So in every case, unless y′2 and y′′2 equal xopt1 , both y′2 and y′′2 have

to be greater than or less than xopt1 to avoid reaching a contradiction.

From lemma 9.3.3, since y′2 > y′′2 > xopt1 or y′2 < y′′2 < xopt1 will always hold. It can be seen

that if the parameters for INT state satisfy a+ d ≥ 1, then we know that xopt1 = xopt2 = x2, so the

maximum possible value for y′2 or y′′2 must be xopt1 so only y′′2 will be considered for the adjusted

x2, and y′2 will never be considered. If a + d < 1, than for a small enough b, y′2 > y′′2 > xopt1 and

for a large enough b, y′2 < y′′2 < xopt1 , so obviously for a certain b value, the curves will cross, i.e.

y′2 = y′′2 = xopt1 , we can simply set equations (9.2) and (9.3) equal to each other and solve for b to

get:

Theorem 9.3.4. Given a budget b, the adjusted delay time y2 for the online algorithm will be

y2 = max{y′2, y′′2 , 0}

Proof. From lemma 9.3.3, we know that one of two scenarios are possible, either y′2 > y′′2 > xopt1 or

y′2 < y′′2 < xopt1 . If both y′2 and y′′2 are larger than xopt1 , then lemma 9.3.1 shows that y′′2 < y′2 and

y′2 is computed using the optimal offline cost, and when both values are less than xopt1 then lemma

9.3.2 shows that y′′2 > y′2 and y′′2 uses the optimal offline cost to compute its value. So the maximum

of the two will yield the correct standby time for y2, and if they both become negative for a large

enough budget b, then the standby time y2 = 0.

73

www.manaraa.com

When we compute the value for y1, there was just one equation, and this will represent the

adjusted x1 time. For y2 there are two different values and we have to choose the appropriate value

for an instance, the last theorem demonstrates a simple way to choose the appropriate value. As

noted earlier, if the budget parameter increases, the delay times begin tapering down and taper

back up if it decreases. If both y′2 and y′′2 are smaller than xopt1 , then y′′2 will be used and will be

the maximal value. Similarly to the DRA, the ε value determines the competitive ratio and also

determines the initial tapered down value when b = 0, for DRA wx1 denoted the initial taper down

value. In this algorithm, the taper values are maximized when b = 0.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Figure 9.10: Taper down values with

respect to b, a = 0.45, d = 0.3, ε = 0.001

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 9.11: Taper down values with

respect to b, a = 0.6, d = 0.4, ε = 0.001

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Figure 9.12: Taper down values with

respect to b, a = 0.45, d = 0.3, ε = 0.1

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Figure 9.13: Taper down values with

respect to b, a = 0.45, d = 0.3, ε = 0.5

The above figures show the values of y1, y′2, and y′′2 , the values decrease as the budget increases.

we can see that in figure 9.13, since a+ d ≥ 1, y′′2 is always greater than y′2, which we already know

is the case. The rest of the figures demonstrate the adjusted wait times with a different ε value. The

horizontal line in all the figures represent x1OT
which acts as a threshold as the which adjusted idle

time we will use for y2. Figures 9.10, 9.13, and 9.12 show the adjusted times with various ε values.

The main observation to notice is that when ε becomes large enough, the maximum y′2 and y′′2 value

will be less than xopt1 and in this situation, the system will behave like a system in which a+ d ≥ 1

74

www.manaraa.com

since both adjusted wait times are indeed less than xopt1 .

9.4 Experimental Results

For our current 3 state taper down model, a script in python was written with all the parameters

needed to correctly compute the y1 and y2 values. The input would take the duration in the idle

state until the next request would arrive. A few test cases were used in which all cases had the same

values for a, d, and ε. After each request the gain or loss for each request is accumulated to the

budget b, and that would result in a possible new idle time y1 and y2. For the tables, we use a = 0.4,

d = 0.4, ε = 0.01, Competitive ratio = 1.9, the adjusted competitive ratio CR(1 + ε) = 1.919,

x1 = 1/3, and x2 = 1.75. These values will never change throughout the duration of the algorithm

in all the input sets.

y1 y2 Budget Gain Next request duration

0.326441784548 1.68706493669 0.0 0.0 0.0

0.321942405581 1.66847256278 0.0041349292710 0.00413492927095 0.34

0.314505456015 1.63774153342 0.0109694859223 0.00683455665133 0.5

0.253351905393 1.38504228589 0.0671695989437 0.05620011302140 1.75

0.253351905393 1.38504228589 0.0671695989437 0.0 0.1

0.201133345258 1.16926428576 0.1151584557080 0.04798885676410 1.3

0.0 0.37737147186 0.4267727342470 0.31161427853900 2

0.0 0.0 1.1758241455000 0.74905141125700 2

0.0 0.41091234661 0.3758241455040 -0.8 0.2

0.321942405581 1.66847256278 0.0 -0.4999649386430 0.411

Table 9.2: Input set 1

We can see that if the idle duration, in any step, is in the range x1 ≤ r < y2 and r ≥ x2, we

have a gain, which subsequently causes the values of y1 and y2 to taper down after that request is

processed in which after the system goes back into its idle period. In the DRA model, if x1 ≤ r < y2

is when the request arrives, this request would be marked as a busy request which would cause the

system to reset to its wait time in which the algorithm started. In this model, it creates a taper

down. Also, if the request arrives before y1, then there will be no gain in which no changes occur

for y1 and y2 after that request. Once both y1 = y2 = 0, if the budget value b is not large enough, a

busy request in which r → 0, the loss can cause the entire budget to become 0 or a negative which

75

www.manaraa.com

basically resets the y1 and y2 values which is depicted in the last row in table 9.2.

y1 y2 Budget Gain Next request duration

0.326441784548 1.68706493669 0.0 0.0 0.0

0.294549559746 1.55527960080 0.029308954593 0.029308954593 2

0.184475105088 1.10042895710 0.130467378424 0.101158423831 2

0.087288013742 0.69883159106 0.219782315371 0.089314936947 0.4

0.326441784548 1.68706493669 0.0 -0.551905444669 0.70

Table 9.3: Input set 2

Here we can see that the y1 and y2 values taper as usual since the nature of the delay times

suggest that behavior. In the last row of table 9.3, we can see that when the request occurs right

around time ≈ y2, the gain becomes negative and its which causes the budget to become negative

and which causes the adjusted wait times to reset to their initial value.

y1 y2 Budget Gain Next request duration

0.326441784548 1.68706493669 0.0 0.0 0.0

0.294549559746 1.55527960080 0.029308954593 0.029308954593 2

0.184475105088 1.10042895710 0.130467378424 0.101158423831 2

0.087288013742 0.69883159106 0.219782315371 0.089314936947 0.4

0.326441784500 1.68706493670 0.0 -0.298372808245 0.09

Table 9.4: Input set 3

In table 9.4 and table 9.3, the inputs are identical in the first 4 rows, but in the last row we

input r ≈ y1, which causes the algorithm to behave in a similar way to the results shown in table

9.3. This last input causes the gain to be negative and this causes the budget to be negative and

the adjusted idle times y1 and y2 once again resets.

76

www.manaraa.com

Chapter 10

Comparison with DRA and Budget

Based Algorithm with OWCR

10.1 Slack Systems

In this chapter, we show experimental results that show the costs of the two state DRA, Budget Based

technique, and OWCR against a random large input sequence generated using an even distribution.

The DRA, Budget Based Algorithm, and OWCR were introduced earlier in the paper and it was

proven that the optimal competitive ratio for the two state power down problem was 2-competitive,

which is the competitive ratio of OWCR. We know that DRA is (2 + ε)-competitive in which ε is an

arbitrarily small constant and the budget based algorithm is 2(1+ε)-competitive, so therefore the

worst case cost of DRA and the budget based will be greater than OWCR. However this is always

true when we have the worst case input sequence fed into the algorithms by the adversary. Here we

will analyze when the inputs are random, we will analyze when the input sequences are slack, where

slack degree d > 1, and when the inputs are busy, where slack degree d < 1. For the analysis, we

have a set of inputs for each slack degree and the input length will be 100 requests.

Each input sequence was constructed using a random number generated using python. For the

rest of this chapter, we will be generating several input sequences for various slack degrees and using

various values of ε, for the DRA and the budget based approach, compare the three costs. The

goal is to show that even though the tapering down approaches have a larger competitive ratio than

OWCR, these techniques could have favorable results over OWCR, for certain types of input, when

the inputs are not necessarily worst case inputs.

77

www.manaraa.com

Figure 10.1: Slack degree d = 2, input set 1 Figure 10.2: Slack degree d = 2, input set 2

Figure 10.3: Slack degree d = 2, input set 3 Figure 10.4: Slack degree d = 2, input set 4

In the above figures, the requests that are inside what appears to be a shaded region are busy

requests and any request above that shaded region can be considered slack requests. For these

examples, we will set β = 1 and α = 1, so the power down threshold will be 1 idle time unit so a

request at or before 1 will be a busy request and any request after 1 will be slack, this will be the

case for all input sequences used in the remainder of this chapter.

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

151.08 149.98 132.57 107.88 113.52 102.77 151.81 84.81

149.44 143.20 134.29 120.54 109.72 103.92 150.55 85.55

153.77 150.46 135.44 106.06 109.55 109.63 153.92 86.93

153.49 147.33 131.53 124.02 104.30 105.71 153.66 86.66

Table 10.1: Costs for d = 2

In table 10.1, each row contains the costs for DRA, Budget based, OWCR, and OPT for each

input sequences from figures 10.1, 10.2, 10.3, and 10.4 respectively. We can see that when ε is

78

www.manaraa.com

smaller, DRA has a similar cost to OWCR, the same is true for the budget based algorithm. This is

clearly due to the fact that DRA tapers down slower when ε is smaller, and thus it almost mimics the

behavior of OWCR. However, when ε is larger, we see a significant savings for the DRA over OWCR,

since the wait time for DRA will reach zero after fewer amount of consecutive slack requests. We

will perform the same routine for slack degree 4, 6, and 8. We do not see that much of a difference

with the budget based technique when the value of ε changes. However, we see that the budget

based algorithm is more optimal compared to the DRA.

Figure 10.5: Slack degree d = 4, input set 1 Figure 10.6: Slack degree d = 4, input set 2

Figure 10.7: Slack degree d = 4, input set 3 Figure 10.8: Slack degree d = 4, input set 4

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

165.20 148.32 126.42 108.79 105.58 105.18 172.27 92.27

163.80 151.88 130.76 108.45 105.02 102.77 172.71 92.71

163.80 147.78 132.08 117.94 105.43 102.43 171.57 91.57

161.77 152.32 132.08 115.63 113.33 108.11 173.08 93.03

Table 10.2: Costs for d = 4

79

www.manaraa.com

Figure 10.9: Slack degree d = 6, input set 1 Figure 10.10: Slack degree d = 6, input set 2

Figure 10.11: Slack degree d = 6, input set 3 Figure 10.12: Slack degree d = 6, input set 4

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

154.71 141.66 123.00 108.06 105.55 105.18 180.98 94.98

157.21 142.19 122.35 117.94 105.75 103.68 180.45 94.45

164.44 143.52 123.59 117.96 105.77 102.77 180.98 94.98

161.11 142.50 122.02 107.66 104.46 104.12 180.21 94.21

Table 10.3: Costs for d = 6

80

www.manaraa.com

Figure 10.13: Slack degree d = 8, input set 1 Figure 10.14: Slack degree d = 8, input set 2

Figure 10.15: Slack degree d = 8, input set 3 Figure 10.16: Slack degree d = 8, input set 4

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

165.57 145.17 119.73 116.83 105.77 102.77 185.55 96.55

162.95 144.76 120.30 107.97 104.76 102.15 184.14 95.14

157.19 142.97 120.23 108.27 105.06 102.37 184.77 95.77

152.11 136.74 116.97 108.87 107.95 102.77 184.87 95.87

Table 10.4: Costs for d = 8

81

www.manaraa.com

DRA Budget Based

Slack degree = 2

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

0.48% 1.21% 12.67% 28.94% 25.22% 32.30%

0.73% 4.88% 10.80% 19.93% 27.12% 30.97%

0.10% 2.25% 12.01% 31.10% 28.83% 28.77%

0.11% 4.12% 14.40% 19.29% 32.12% 32.21%

Slack degree = 4

4.10% 13.90% 26.62% 36.85% 38.71% 38.94%

5.16% 12.06% 24.29% 37.20% 39.19% 40.50%

4.53% 13.87% 23.02% 31.26% 38.55% 40.30%

6.53% 11.99% 23.69% 33.19% 34.52% 37.54%

Slack degree = 6

14.52% 21.73% 32.04% 40.29% 41.68% 41.88%

12.88% 21.20% 32.30% 34.64% 41.40% 42.54%

9.09% 20.70% 31.71% 34.82% 41.56% 43.21%

10.60% 20.93% 32.30% 40.26% 42.03% 42.22%

Slack degree = 8

10.77% 21.76% 35.50% 37.04% 43.00% 44.61%

11.51% 21.40% 34.67% 41.37% 43.11% 44.53%

14.93% 22.62% 34.93% 41.40% 43.12% 44.60%

17.72% 26.03% 36.73% 41.11% 41.61% 44.41%

Table 10.5: Comparison of DRA and Budget Based Algorithm with OWCR with slack system

Table 10.5 shows the percent savings for DRA and the budget based over OWCR, using the

outputs generated from tables 10.1, 10.2, 10.3, and 10.4. We can see that as we increase the slack

degree the DRA and budget based algorithm both have significant savings over the OWCR. This is

due to the fact that once we have several consecutive slack requests, the tapering down techniques

wait times converge to 0 and they both start mimicking the optimal offline strategy which is to power

down if a slack request arrives which the tapering down techniques are doing. We see both the DRA

and budget based techniques yield better results for larger ε values and for input sequences with

higher slack degree because larger ε values force the tapering techniques to behave more aggressively

and taper down at a larger rate and will converge to a wait time of 0 after fewer consecutive slack

requests than when ε is smaller.

When we compare DRA with the budget based technique we see that the budget based technique

yields significantly greater savings than the DRA when we have a large or small ε value. The DRA

82

www.manaraa.com

does not have as significant savings for a small ε value compared to a larger ε value since it tapers

down slowly for a small ε value and for a slack system it is more favorable to taper down quickly,

the budget based technique, however, yields significant savings regardless of the value of ε, although

it does improve for larger ε value as well, but the savings does not increase drastically for larger ε

values. The next section will further analyze how the two algorithms behave using the same inputs

used in this section with the same ε values.

10.2 Comparison of DRA with Budget Based Algorithm with Slack Sys-

tems

When we compared the DRA with the budget based algorithm, we saw that the budget based

technique gave us better results as the slack degree increased for the input, even when the value of

ε was decreased. We can take a look at the costs of DRA and budget based algorithm after each

request for the slack degree 2 input sets using ε = 0.001 for DRA and ε = 0.0005 for the budget

based approach such that they both have a competitive ratio of 2.001.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.17: Costs when CR set to 2.001, slack

degree 2, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.18: Costs when CR set to 2.001, slack

degree 2, from second input set

83

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.19: Costs when CR set to 2.001, slack

degree 2, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.20: Costs when CR set to 2.001, slack

degree 2, from third input set

We can see that in each figure, the budget based algorithm converges to a constant value after

a set of slack requests. The DRA however constantly resets to the maximum delay time, since a

busy request arrives. We see at the beginning, the cost of the budget based algorithm is similar to

DRA, however once the budget based algorithm curve becomes constant the DRA is often above

the budget based curve, so the budget based algorithm has a lower cost than the DRA. Let us take

a look at how the two algorithms are tapering after each request.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.21: Wait times when CR set to 2.001,

slack degree 2, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.22: Wait times when CR set to 2.001,

slack degree 2, from second input set

84

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.23: Wait times when CR set to 2.001,

slack degree 2, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.24: Wait times when CR set to 2.001,

slack degree 2, from third input set

According to figures 10.21, 10.22, 10.23, 10.24, we see that often the wait times for the budget

based technique is smaller than the wait times for the DRA. We see that DRA is tapering down

at a slow rate since the value of ε = 0.001, so it is constantly tapering down for each slack request

and resets back to the initial wait time, where the budget based technique at a certain point has a

wait time of 0. When a busy request arrives, the budget will decrease since the busy request incurs

a loss however this loss does not decrease the budget enough to force the wait time to increase. So

when the wait time is 0 for a slack request, the budget based technique is behaving similarly to the

optimal offline algorithm, which yields are fairly optimal cost over the DRA. Let us increase the ε

values such that both algorithms have a competitive ratio of 2.1.

85

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.25: Costs when CR set to 2.1, slack

degree 2, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.26: Costs when CR set to 2.1, slack

degree 2, from second input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.27: Costs when CR set to 2.1, slack

degree 2, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.28: Costs when CR set to 2.1, slack

degree 2, from third input set

From figures 10.25, 10.26, 10.27, and 10.28 where the competitive ratio is 2.1, we see similar

behaviors as when we had smaller ε values which had a competitive ratio of 2.001. When the

competitive ratio is 2.1, we see that the DRA has more instances when it has a minimal cost than

the budget based technique however more often the budget based technique has a lower cost than

the DRA for the set of requests. Let us look at how the wait times change for each request.

86

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.29: Wait times when CR set to 2.1,

slack degree 2, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.30: Wait times when CR set to 2.1,

slack degree 2, from second input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.31: Wait times when CR set to 2.1,

slack degree 2, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.32: Wait times when CR set to 2.1,

slack degree 2, from third input set

When we increase the competitive ratio to 2.1, we see similar behavior of the two algorithms.

The wait time for the budget based reaches 0 after few number of requests, and once again, once

the wait time becomes 0 it stays 0 throughout the duration of the remaining requests. The DRA

tapers down at a faster rate than when the competitive ratio was 2.001, however its wait times are

usually above the budget based wait time curve, there are a few exceptions where the two curves

are both at 0, but overall the DRA has a larger wait time and when the cost of DRA is above the

budget based, the budget based technique (as in the earlier example) is saving power and is nearly

mimicking the optimal offline algorithm. Now let us look at the two algorithms for a more slack

system where the slack degree is 8.

87

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.33: Costs when CR set to 2.001, slack

degree 8, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.34: Costs when CR set to 2.001, slack

degree 8, from second input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.35: Costs when CR set to 2.001, slack

degree 8, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.36: Costs when CR set to 2.001, slack

degree 8, from third input set

We see similar results to the input sets where the slack degree was 2, we also see more instances

where the cost of DRA is equal to the cost of the budget based approach since there are several

consecutive slack requests, which is a result of having an input that is slack. The budget based

approach curve once again converges to a constant after several slack degrees arrive. We can see the

corresponding wait times below.

88

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.37: Wait times when CR set to 2.001,

slack degree 8, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.38: Wait times when CR set to 2.001,

slack degree 8, from second input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.39: Wait times when CR set to 2.001,

slack degree 8, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.40: Wait times when CR set to 2.001,

slack degree 8, from third input set

We can see the budget based approach tapers down to 0 after a set of slack requests arrive and the

DRA is tapering down slowly since the ε value is arbitrarily small. There are several instances where

the wait time for the DRA becomes 0 and matches the wait time of the budget based algorithm.

Unlike the budget based technique, once a busy request arrives, it resets it wait time where the

budget based technique remains 0 due to the fact the budget did not decrease enough to force the

wait time to decrease, similarly to the example where we had a slack degree 2. Let us look at the

two techniques when we increase their respective ε values.

89

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.41: Costs when CR set to 2.1, slack

degree 8, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.42: Costs when CR set to 2.1, slack

degree 8, from second input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.43: Costs when CR set to 2.1, slack

degree 8, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.44: Costs when CR set to 2.1, slack

degree 8, from third input set

With a high slack degree and a small ε value, the DRA obtained its minimal cost and we see that

there are several instances where the costs of DRA amd budget based technique are equal. Since

the slack degree is arbitrarily high, most of the requests in the sequence will be slack, so when the

budget based cost is 1 (the power up cost), so its cost will be close the the optimal cost produced by

the optimal offline algorithm which table 10.5 clearly showed. Even though the DRA was the most

optimal in this case, it was wasting energy tapering down to a lower wait time when the optimal

approach was to instantly power down after each slack request. The following table will show the

wait times of the two algorithms.

90

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.45: Wait times when CR set to 2.1,

slack degree 8, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.46: Wait times when CR set to 2.1,

slack degree 8, from second input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.47: Wait times when CR set to 2.1,

slack degree 8, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.48: Wait times when CR set to 2.1,

slack degree 8, from third input set

Based on the costs for DRA for a high slack degree and arbitrarily small ε value, we see that it

tapers down quickly to 0 and there are many instances where the DRA and budget based algorithm

both have a wait time of 0, which is the optimal wait time for any slack request, and because DRA

has many instances where it is mimicking the optimal offline algorithm, DRA yields its best results

compared to when we have a smaller slack degree input and when the ε value is smaller. We do not

see a big difference for the budget based technique for slack degree 8 for when we have a smaller or

larger ε, but DRA saw significantly better costs when ε was larger since it would taper down at a

faster rate. In general, these tapering down algorithms improve when we have a larger slack degree

and when ε is larger, and overall we see that for a slack system, the budget based technique is more

91

www.manaraa.com

optimal than DRA for all the experimental inputs and for the ε values used. Now we will analyze

the two approaches for busy systems.

10.3 Busy Systems

Earlier in this chapter, we compared DRA and the budget based technique with OWCR for inputs

that were slack, where the slack degree was greater than 1. In this section we will compare the two

algorithms when we have a busy input sequence, where slack degree is smaller than 1.

Figure 10.49: Slack degree d = 0.25, input set 1 Figure 10.50: Slack degree d = 0.25, input set 2

Figure 10.51: Slack degree d = 0.25, input set 3 Figure 10.52: Slack degree d = 0.25, input set 4

Once again, the requests in the shaded region will be busy requests, and any request above the

shaded region is slack. Once again we set β = 1 and α = 1, so the power down threshold will be

1 idle time unit. The costs for DRA, budget based algorithm, OWCR, and OPT for each input

sequence is shown in the following table.

92

www.manaraa.com

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

84.64 86.34 93.81 85.98 88.96 94.08 84.67 64.67

87.67 88.43 97.12 89.05 92.78 100.83 87.70 67.70

89.75 92.41 102.04 92.51 96.04 101.39 88.78 67.78

89.38 89.21 104.55 91.49 93.01 103.76 89.40 69.40

Table 10.6: Costs for d = 0.25

So far, after looking at the input sequences in which the slack degree is 0.25, we see that DRA

has a favorable cost when ε is smaller than when ε is larger, the opposite was true when the slack

degree was larger than 1. We will perform the same routine for slack degree, 0.5, 2/3, and 0.8. We

also notice that in this case, the budget based technique did not produce minimal costs as in the

previous section, we can see that it did worse than DRA and OWCR.

Figure 10.53: Slack degree d = 0.5, input set 1 Figure 10.54: Slack degree d = 0.5, input set 2

Figure 10.55: Slack degree d = 0.5, input set 3 Figure 10.56: Slack degree d = 0.5, input set 4

93

www.manaraa.com

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

105.42 106.76 108.79 108.49 109.94 97.84 105.50 71.50

109.08 110.42 115.12 111.30 111.70 115.65 109.15 75.15

107.44 106.78 113.01 108.82 106.70 114.58 106.51 72.51

106.57 107.11 112.77 108.93 107.85 116.10 106.61 72.61

Table 10.7: Costs for d = 0.5

Figure 10.57: Slack degree d = 2/3, input set 1 Figure 10.58: Slack degree d = 2/3, input set 2

Figure 10.59: Slack degree d = 2/3, input set 3 Figure 10.60: Slack degree d = 2/3, input set 4

94

www.manaraa.com

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

114.57 115.64 118.44 108.17 109.30 111.32 114.68 74.68

110.17 109.42 110.12 105.12 113.86 116.00 110.26 71.26

114.48 112.78 114.43 115.80 107.67 109.24 113.66 73.66

115.40 116.36 118.07 116.95 109.15 107.05 115.47 75.47

Table 10.8: Costs for d = 2/3

Figure 10.61: Slack degree d = 0.8, input set 1 Figure 10.62: Slack degree d = 0.8, input set 2

Figure 10.63: Slack degree d = 0.8, input set 3 Figure 10.64: Slack degree d = 0.8, input set 4

95

www.manaraa.com

DRA Budget Based Algorithm OWCR OPT

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

125.45 128.90 129.59 128.40 131.46 117.75 125.58 80.58

122.73 121.01 121.72 116.60 103.86 108.15 122.29 77.29

119.89 119.96 123.87 110.75 124.22 110.07 119.99 74.99

123.70 121.75 119.03 118.56 104.13 104.72 122.93 77.93

Table 10.9: Costs for d = 0.8

DRA Budget Based

Slack degree = 0.25

ε = 0.001 ε = 0.01 ε = 0.1 ε = 0.0005 ε = 0.005 ε = 0.05

0.04% -1.97% -10.80% -1.55% -5.07% -11.11%

0.03% -0.80% -10.74% -1.54% -5.80% -15.00%

-1.13% -4.10% -14.94% -4.20% -8.18% -14.20%

0.02% 0.21% -16.95% -2.34% -4.04% -16.06%

Slack degree = 0.5

0.08% -1.19% -3.12% -2.83% -4.21% 7.26%

0.06% -1.16% -5.50% -2.00% -2.34% -5.96%

-0.87% -0.25% -6.10% -2.17% -0.18% -7.58%

0.04% -0.47% -5.78% -2.18% -1.16% -8.90%

Slack degree = 2/3

0.10% -0.84% -3.01% 5.68% 4.69% 2.92%

0.08% 0.76% 0.13% 4.66% -3.27% -5.21%

-0.72% 0.77% -0.68% -1.88% 5.27% 3.89%

0.06% -0.77% -2.25% -1.28% 5.47% 7.29%

Slack degree = 0.8

0.10% -2.64% -3.19% -2.25% -4.68% 6.24%

-0.36% 1.05% 0.47% 4.65% 15.07% 11.56%

0.08% 0.03% -3.23% 7.70% -3.53% 8.27%

-0.65% 0.96% 3.17% 3.55% 15.29% 14.81%

Table 10.10: Comparison of DRA and Budget Based Algorithm with OWCR with busy system

Table 10.10 shows the percent savings for DRA and the budget based over OWCR using outputs

from tables 10.6, 10.7, 10.8, and 10.9. For busier systems. We can see that the tapering techniques

do not yield a significant savings, we actually use more energy when the slack degree is arbitrarily

96

www.manaraa.com

smaller and when the ε value is larger. The reason behind this is because if the tapering techniques

taper down too quickly when a slack request does arrive, tapering down will cause them to lose

energy since it is likely that we will have a busy request and the optimal strategy is not to power

down for said strategy. So we see for a arbitrarily busier system, both techniques obtain better costs

when when ε is smaller.

If we compare DRA with the budget based technique, we see that when the slack degree is

smaller, the DRA usually has better performance than the budget based technique. This is due to

the fact that DRA tapers down at a smaller rate and resets back more rapidly than the budget based

technique and for a busy system, having the wait time close to the threshold wait time is in fact

the optima strategy, we will see in the next section that shows this behavior. We can also see that

when the slack degree increases, the budget based technique obtains significantly better results than

DRA. The final conclusion that can be seen is that if we have an arbitrarily busy system, OWCR is

the better strategy than a tapering down strategy.

10.4 Comparison of DRA with Budget Based Algorithm with Busy Sys-

tems

Let us analyze the costs of DRA with budget based after each input sequence used in the previous

section.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.65: Costs when CR set to 2.001, slack

degree 0.25, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.66: Costs when CR set to 2.001, slack

degree 0.25, from second input set

97

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.67: Costs when CR set to 2.001, slack

degree 0.25, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.68: Costs when CR set to 2.001, slack

degree 0.25, from forth input set

When ε for DRA and budget based was 0.001 and 0.0005 respectively, the taper down techniques

were the most optimal for a busy systems, where most of the requests were busy requests. Their costs

were similar to OWCR however DRA was slightly more optimal than the budget based technique.

However even though DRA was slightly more optimal, the cost curves looked identical after most of

the requests. Let us take a look at the tapered down wait times.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.69: Wait times when CR set to 2.001,

slack degree 0.25, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.70: Wait times when CR set to 2.001,

slack degree 0.25, from second input set

98

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.71: Wait times when CR set to 2.001,

slack degree 0.25, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.72: Wait times when CR set to 2.001,

slack degree 0.25, from forth input set

We can see that the wait times for DRA are all converged to 1 (since β and α are both 1, the

maximum wait time will be 1 as well), so DRA is basically mimicking the OWCR which happens

to be the optimal approach when the slack degree is arbitrarily small, when we have a busy system.

The budget based technique has a instance where the wait time drops and then tapers back up to

1. During these intervals is where DRA yields power savings since the machine running the budget

based technique is powering down too soon and the request happens to be a busy request and the

DRA saved power by remaining in the on state at the moment when that busy request arrives. We

can see that pattern for of the test inputs. Now let us see the cost curves when we increase the ε

values.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.73: Costs when CR set to 2.1, slack

degree 0.25, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.74: Costs when CR set to 2.1, slack

degree 0.25, from second input set

99

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.75: Costs when CR set to 2.1, slack

degree 0.25, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.76: Costs when CR set to 2.1, slack

degree 0.25, from forth input set

We see when the value of ε is larger, the cost curves of the two algorithms differ for many of

the requests. From table 10.10, we know that DRA and budget based yield worse results for slack

degree 0.25 when ε is arbitrarily larger, which is the opposite when we have a more slack system.

But once again, the DRA is slightly more optimal than the budget based approach. Once again, let

us look at the tapered wait times after each request.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.77: Wait times when CR set to 2.1,

slack degree 0.25, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.78: Wait times when CR set to 2.1,

slack degree 0.25, from second input set

100

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.79: Wait times when CR set to 2.1,

slack degree 0.25, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.80: Wait times when CR set to 2.1,

slack degree 0.25, from forth input set

Similarly to when ε was smaller, the budget based technique is tapering down at a faster rate

which can cause it to save more power than DRA but because it powers down too soon when

we encounter a busy request which causes the budget to decrease and causing the budget based

technique to yield a larger cost than the DRA approach. Both techniques are significantly worse

than OWCR, when ε is larger, due to the fact that they taper down too quickly and incur a power

up cost for several busy requests in which power could have been saved had the machine not powered

down. We can see that when we had a slack system, the budget based technique was the better

algorithm but for a busy system, we see that DRA is more optimal but OWCR is more optimal than

both techniques for busier system. Let us take a look at the costs when the input requests are more

slack, we will analyze when the slack degree is 0.8.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.81: Costs when CR set to 2.1, slack

degree 0.8, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.82: Costs when CR set to 2.1, slack

degree 0.8, from second input set

101

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.83: Costs when CR set to 2.1, slack

degree 0.8, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.84: Costs when CR set to 2.1, slack

degree 0.8, from forth input set

In the above figures we are seeing similar results as to when the slack degree was greater than 1.

Once again the budget based technique is saving energy due to the fact that there are more slack

requests and the budget increases. The budget never decreases enough to force the wait time for

the budget based technique to increase to a value above 0. Now we see that the DRA curve has

many instances where its cost is greater than 1 during the times when the budget based technique

is converged at 1. This explains the savings for the budget based technique over the DRA when the

slack degree is set to 0.8.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.85: Wait times when CR set to 2.1,

slack degree 0.8, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.86: Wait times when CR set to 2.1,

slack degree 0.8, from second input set

102

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.87: Wait times when CR set to 2.1,

slack degree 0.8, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.88: Wait times when CR set to 2.1,

slack degree 0.8, from forth input set

Once again, the budget based wait times become 0, and the DRA is slowly tapering down to 0

and then it resets once we have a busy request, but the budget based wait time remains at 0 since

the budget does not decrease significantly enough to force the wait time to increase. As we saw for

a slack system, during this interval do we see that the budget based technique yields a better cost

over DRA. Let us look at the situation where we decrease the ε values.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.89: Costs when CR set to 2.001, slack

degree 0.8, from first input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.90: Costs when CR set to 2.001, slack

degree 0.8, from second input set

103

www.manaraa.com

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.91: Costs when CR set to 2.001, slack

degree 0.8, from third input set

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Figure 10.92: Costs when CR set to 2.001, slack

degree 0.8, from forth input set

The budget based technique is more optimal than DRA even when we decrease the ε value

however the savings is not as significant as when the ε value was larger. Since ε is smaller, the two

algorithms are not tapering down as quickly, for the budget based technique, it took more time for

the cost curve to converge to 1, because it took more requests to build up the budget to the point

where it would force the wait time to become 0 due to the fact that the machine was not tapering

as quickly.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.93: Wait times when CR set to 2.001,

slack degree 0.8, from first input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.94: Wait times when CR set to 2.001,

slack degree 0.8, from second input set

104

www.manaraa.com

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.95: Wait times when CR set to 2.001,

slack degree 0.8, from third input set

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.96: Wait times when CR set to 2.001,

slack degree 0.8, from forth input set

We see that similarly to the previous example, when ε was larger, the wait time of the budget

based technique eventually converges to 0 which yields a more optimal result than DRA since there

are several slack requests and wait time of the DRA is larger than budget based wait times, which

is not the optimal choice for a slack requests. Since ε is smaller, for one case we saw that the budget

based never converged and for the other cases it converges but it took more time which is why the

budget based technique for this case was not as optimal.

In conclusion, we see that when we have a more busy system, neither the budget based technique

nor the DRA yielded much savings over the OWCR. For a more busy system, a smaller ε would yield

better results and for a busy system a larger ε value yielded better results. For a busy system, DRA

had better results than the budget based and for a more slack system, the budget based yielded

better results. So in general for a busy system where the slack degree is closer to 0, the OWCR is

a better choice and when the slack degree gets larger the two tapering algorithms were both better

than OWCR however the budget based yielded better results than the DRA.

105

www.manaraa.com

Chapter 11

Comparison of 3 State Taper Down

Algorithms

11.1 Slack Systems

In this chapter, we will compare the three state DRA with the three state algorithm with reduced

delay times using a budget which was introduced in chapter 9, for the rest of this chapter we will call

this algorithm Budget Based Algorithm (BBA). The input sets will be the same as used in chapter

10, which were displayed in the figures in that chapter. We will use εBBA and εDRA to denote the

ε to adjust the competitive ratio for BBA and DRA respectively. We choose εBBA and εDRA such

that the adjusted increased competitive ratio of BBA and DRA are equal. As in chapter 10, we will

run the algorithms with input in which its slack degree is greater than 1 and afterwards input sets

that have a slack degree less than 1 which denote busier systems. We will also compute the cost of

LEA and ALG1.8 which denotes the algorithm which yields a competitive ratio of 1.8 when a = 0.6

and d = 0.4, the optimal algorithm for three state problems, and LEA will be the 2-competitive

algorithm.

106

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.99 0.1 123.53

151.81 136.93 84.811/180 107.34 0.01 138.63

1/1800 105.02 0.001 143.00

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.63 0.1 128.32

150.55 135.54 85.551/180 111.38 0.01 138.78

1/1800 105.22 0.001 143.27

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 102.36 0.1 128.12

153.93 138.70 86.931/180 110.53 0.01 141.31

1/1800 103.79 0.001 147.39

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 105.29 0.1 124.96

153.66 138.24 86.661/180 103.49 0.01 138.07

1/1800 105.08 0.001 143.87

Table 11.1: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 2

We can see from the above table that for a slack system, in this case slack degree 2, LEA and

ALG1.8 are significantly worse than DRA and BBA. For all εBBA values, BBA does not have any

significant changes, and the costs are all similar to the cost of OPT. As we know, if εDRA is smaller

then its cost goes up, as we have seen in the previous chapter, but BBA is not effected the same

way. Which means if we decrease the εBBA we have a smaller competitive ratio in the worst case

without increasing the overall cost for this random input set.

107

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 103.80 0.1 119.80

172.27 154.83 92.271/180 103.73 0.01 135.33

1/1800 105.98 0.001 149.85

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.99 0.1 122.46

172.71 155.29 92.711/180 106.01 0.01 138.84

1/1800 105.47 0.001 149.40

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.68 0.1 119.68

171.57 154.54 91.571/180 103.71 0.01 136.27

1/1800 105.96 0.001 149.70

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 105.34 0.1 124.60

173.03 155.68 93.031/180 110.09 0.01 141.64

1/1800 111.64 0.001 151.17

Table 11.2: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 4

We can clearly see that if the input has a higher slack degree, LEA and ALG1.8 increase even

further than when the slack degree was set at 2. So for a higher slack degree, LEA, which is 2-

competitive, is truly approaching a cost twice as much as OPT, same issue for ALG1.8. Not much

significant difference is seen with BBA and DRA in this input test. We once again that for DRA if

εDRA is smaller it has a worse performance than when εDRA is larger, as with 2 state problem, if the

system is slack, OPT will typically go into the OFF state right after the request and DRA behaves

similarly for slack input and when εDRA is larger.

108

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 103.80 0.1 117.94

180.98 162.67 94.981/180 103.71 0.01 130.44

1/1800 106.15 0.001 141.43

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 102.71 0.1 116.74

180.45 162.29 94.451/180 103.90 0.01 129.93

1/1800 106.15 0.001 142.52

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.99 0.1 117.01

180.98 162.84 94.981/180 104.00 0.01 131.98

1/1800 106.22 0.001 146.59

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 104.21 0.1 116.13

180.21 162.25 94.211/180 104.93 0.01 130.52

1/1800 104.88 0.001 144.19

Table 11.3: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 6

When we have slack degree 6, for LEA and ALG1.8 has similar results as with earlier trials. BBA

stills seems to be the better choice taper down approach for slack systems than the 3 state DRA,

regardless of their respective ε values. As with the 2 state machine, even though DRA and BBA

have a higher competitive ratio, they have better performance for a random input sequence. Clearly

this is the case because for LEA and ALG1.8 algorithms have a worst case cost when we have a slack

request since it is in the ON or INT state more often than DRA and BBA. We will look at one last

input set next.

109

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.99 0.1 114.35

185.55 166.71 96.551/180 104.00 0.01 131.26

1/1800 106.61 0.001 148.13

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 102.48 0.1 114.83

184.14 165.75 95.141/180 105.66 0.01 132.29

1/1800 105.22 0.001 146.50

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.58 0.1 114.40

184.76 166.30 95.771/180 104.12 0.01 131.78

1/1800 105.44 0.001 142.82

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.99 0.1 112.75

184.87 166.27 95.871/180 104.04 0.01 125.70

1/1800 111.62 0.001 138.81

Table 11.4: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 8

After seeing all the slack input sequences we can conclude that for 3 state slack system, a tapering

down approach yields better results. DRA has better performance when the slack degree is raised

and when ε is larger. BBA for all input sequences never does not seem to improve but have similar

results for all input sequences that we have used. Since every input sequence has a slack degree

greater than 1, is always gaining thus the budget is always increasing. Once the budget is large

enough, the values for y1 and y2 reach the value of 0. When a busy request arrives the loss is not

great enough to decrease the budget enough to force y1 or y2 to become larger than 0. For DRA

however, when a busy request arrives at any point, we reset the delay times for u and q back to

first values in their respective sequences. This is where DRA increases its cost over BBA, DRA will

reset, i.e. increase its wait time after just 1 busy request, where BBA will not increase its wait times,

unless there are several requests in which we keep having a negative gain until the budget forces the

wait times to starting increasing. In these test inputs, we see that the better choice algorithm is the

BBA, especially when the ε value for both BBA and DRA are arbitrarily smaller.

110

www.manaraa.com

11.2 Busy Systems

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 101.35 0.1 99.35

84.67 76.58 64.671/180 96.74 0.01 95.96

1/1800 95.96 0.001 94.12

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 108.36 0.1 105.90

87.70 79.03 67.701/180 102.91 0.01 100.52

1/1800 99.97 0.001 98.18

3th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 107.34 0.1 107.38

88.78 79.23 68.781/180 100.67 0.01 99.07

1/1800 99.84 0.001 97.38

4rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 111.36 0.1 112.85

89.40 80.18 69.401/180 105.62 0.01 101.75

1/1800 103.34 0.001 101.74

Table 11.5: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 0.25

In the case where the slack degree is 0.25, we see that the LEA and ALG1.8 algorithms have a better

performance than DRA and BBA. In the previous examples where BBA had significant savings over

DRA, BBA is more costly in several scenarios. As expected with DRA, when the inputs are more

busy, DRA is better when εDRA is smaller, also BBA yields a better savings when εBBA is smaller

as well. The minimal slack degree that was used in the example trials is 0.25, therefore this input is

the busiest input that will be used. Now we will slightly increase the slack degree.

111

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 97.98 0.1 111.57

105.50 95.13 71.501/180 112.47 0.01 110.68

1/1800 99.93 0.001 109.82

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 102.48 0.1 117.37

109.15 97.93 75.151/180 119.30 0.01 116.70

1/1800 113.91 0.001 115.81

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 111.89 0.1 116.58

106.51 96.09 72.511/180 116.29 0.01 113.11

1/1800 114.69 0.001 112.59

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 118.51 0.1 117.40

106.61 96.04 72.611/180 107.19 0.01 112.29

1/1800 112.30 0.001 111.57

Table 11.6: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 0.5

With this slight increase with slack degree, the trends from the earlier section are starting to

apply. We see that the costs of the LEA and ALG1.8 have increased and DRA is worse when εDRA

is smaller and better when it is larger. The costs of BBA are slightly all similar regardless of its ε

value, similarly when the input was more slack. LEA and ALG1.8 still have a slightly better output

than the tapering down approaches.

112

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 100.15 0.1 118.07

114.68 102.93 74.681/180 106.68 0.01 117.11

1/1800 102.39 0.001 116.38

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 103.44 0.1 113.15

110.26 99.74 71.261/180 114.53 0.01 112.19

1/1800 104.86 0.001 111.61

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 110.21 0.1 115.81

113.66 102.61 73.661/180 108.56 0.01 115.39

1/1800 108.60 0.001 116.53

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 107.17 0.1 120.02

115.47 103.92 75.471/180 100.83 0.01 118.40

1/1800 110.57 0.001 118.15

Table 11.7: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 2/3

We see that the tapering down approaches are not changing as we increase the slack degree, but

in comparison they are improving because the cost for LEA and ALG1.8 are increasing. The DRA

has better results when the ε value is smaller, but the BBA has no pattern, as we change its ε value,

its cost seems to be rather random.

113

www.manaraa.com

1st input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 113.62 0.1 126.06

125.58 112.38 80.581/180 112.68 0.01 129.02

1/1800 129.54 0.001 127.73

2nd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 105.79 0.1 120.38

122.29 109.98 77.291/180 106.49 0.01 120.63

1/1800 103.15 0.001 122.69

3rd input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 102.03 0.1 122.55

119.99 108.17 74.991/180 102.67 0.01 118.73

1/1800 120.79 0.001 119.22

4th input set εBBA BBA εDRA DRA LEA Alg1.8 OPT

1/18 107.54 0.1 120.14

122.93 110.53 77.931/180 106.74 0.01 123.00

1/1800 113.49 0.001 125.67

Table 11.8: Costs for 3 state algorithms, a = 0.6 and d = 0.4, slack degree 0.8

When the slack degree is closer to 1, DRA has similar behavior to that when the slack degree

was above 1, in the previous section, DRA has a better result when εDRA is smaller. BBA in a

few inputs sets it has similar cost regardless of its ε value and other runs it has better results when

its ε is larger. Similar to DRA, since the system is more slack than before, it has a smaller cost

when its ε value is larger. For all the cases of when the input had a slack degree below one, ALG1.8

always yielded better output than any of the other online algorithms. As expected, the taper down

approaches are better when we have slack input not busy input, we saw this with the 2 state problem

and here with the 3 state problem. The DRA was not optimal in a busy system but had slightly

better cost for busier systems than BBA, when the slack degree was approaching 1 and when the

slack degree was greater than 1, BBA was more optimal than the DRA.

114

www.manaraa.com

Chapter 12

Conclusion

12.1 Summary

In this dissertation, we analyzed several models of the power down problem. We first presented

the fundamentals of online algorithms. An online algorithm is such an algorithm that makes its

decisions without any knowledge of the future. Online algorithms played a key role for power down

problems because we needed to model a system for a real-world application where future requests

cannot be known. We used online competitive analysis because we want to model our algorithm

after the worst case, such that we know how our algorithm would perform in the worst case which is

why we avoided queueing theory, if we our algorithm could perform well in the worst case, it would

imply that it would perform well in the best case, or at least better than it did in the worst case. We

then began our work from the two state problem which is based on the ski rental algorithm which

was proven to be a 2-competitive algorithm.

From the two state problem, we introduced the three state problem. In this problem, we had

some intermediate state that allowed the machine to switch from the ON state to this intermediate

state rather than switch straight to the OFF state. Adding in this third state overall decreased the

competitive ratio, as with the two state problem, we needed to choose a switch time that would yield

a minimal competitive ratio. Once we choose that switch time, we yielded a better competitive ratio

than 2. Also when if we set the unit cost to be 0.6 times the ON state unit cost and 0.4 times the

OFF state power up cost, we obtained the minimum competitive ratio for the three state problem

of 1.8.

We then build on the three state principle to develop an algorithm for the five state system. As

with the three state system, the five state system would have three intermediate states which can be

used alternatively than switching from ON to OFF. We developed an approximation algorithm that

115

www.manaraa.com

computes the switch times to reach a target competitive ratio and using a binary search technique

of possible competitive ratios in a range until we reach the minimal competitive ratio within some

approximation. This method was based on the method used for the n state power machine but

since it was concentrated specifically on the five state machine, we were able to introduce this simple

version of obtaining a schedule that yielded the minimum competitive ratio for the five state system.

After working on systems with small number of states, and since there was prior work done on

n state machines, we made research on the infinite state problem, and we focused our attention

from the discrete model to this continuous model. Similar to the discrete model, we assigned a

unit cost and a power up cost to each state in this continuous range by creating two continuous

functions, one for the unit cost and the other for the power up cost. Once again, similar to any

power down system, we needed to devise a schedule to attempt to obtain a minimal competitive

ratio. We first tried the lower envelope approach which gave us a 2-competitive result. We obtained

the optimal offline algorithm transition schedule, and then we developed a few different mechanisms

to transition to the lower power states that were used in the online algorithm. We could classify

these strategies as transitioning to lower power states faster than the offline and slower than the

offline. After experimenting with these strategies were able to conclude that the better strategy were

the ones that transitioned to lower power states faster than then the offline algorithm strategy.

We then introduced two tapering based strategies. The first one was the decrease and reset

algorithm (DRA). We classified a request as either busy or slack, and when the system had a set of

consecutive slack requests, the machine began to tapering down, since the requests arriving in this

fashion suggested that the machine was not busy and thus could turn itself off at an earlier time

to save energy. Using this method allowed us to change the wait times to save energy while not

increasing the competitive ratio by a large factor. We then presented another technique to taper

down the wait times which uses a budget, the amount of savings that the algorithm had dictated

how the wait time adjusted while also not increasing the competitive ratio by a large factor either.

The difference between DRA and the budget based technique is that DRA would only taper down

on a slack request and as soon as a busy request arrived, then it would adjust back to the maximum

wait time. where the budget based technique would taper down only when energy saved (which

occurred with a slack request but not limited to a slack request), and would adjust its wait time to

a larger amount only when budget decreased (if energy decreased).

Then we compared the two state DRA with the budget based algorithm along with the OWCR

with a set of test inputs. The budget based algorithm performed better than the DRA as the

slack degree increased for the input. Both algorithms had a control parameter ε that causes the

competitive ratio to increase and controls how the algorithms adjust their wait times. When we

116

www.manaraa.com

set ε to a higher value, both techniques performed better than OWCR, however the budget based

technique out performed DRA using any ε value for any slack input. When we experimented on busy

input, we saw that neither the DRA not budget based technique performed better than the OWCR.

These tapering based techniques adjust their wait time based on saving energy or on consecutive

slack requests, and thus these tapering strategies produce favorable results when we have many

instances of long wait times between requests.

We then apply these tapering down strategies onto the three state power down problem. In this

case we tapered down the wait time in the ON state as well as the INT state, however, the DRA only

adjusted its ON state wait duration and not the INT state duration after consecutive slack requests.

Once the ON state duration became 0, only then did the INT state duration begin to taper down

and often it would take one or two slack requests to taper the INT state wait time down to 0.

With the budget based technique we were able to simultaneously taper the ON state and INT state

durations. We once again ran simulations with these two tapering algorithms along with the lower

envelope algorithm and the three state technique that have a 1.8-competitive result. Once again, we

saw better results with the tapering strategies for a higher slack degree input and especially when

ε was set to a higher value. Once again, the budget based algorithm out performed DRA in the

three state setting. However, if the input was busy, the DRA and budget based technique performed

worse than the non tapering algorithms.

This dissertation was done to investigate the power down problem in several isolated environ-

ments from few states to infinite states to analyze the behavior in great detail in each environment.

We were able to reach an upper bound on the three state state system to be 1.8-competitive without

using an approximation to bound this result. We came to the conclusion that having a machine with

more states yield a better competitive ratio, which was shown on the five state problem and the

infinite state problem. We also reached results on the taper down based algorithms which showed

significantly better results for experimental input with only a slight increase in the competitive ratio,

and this technique can be applied to any system with any number of states.

12.2 Future Work

Our future work will consist of refining and combing our ideas from this thesis. The work done

on the infinite state problem is quite sparse, since not much work has been done on that subject.

We will continue to develop new strategies to attempt to come up with upper or lower bounds,

which also includes coming up with upper or lower bounds for the three and five state power down

machine. Since the tapering down strategy is a generic strategy that can be applied to any model,

we can consider applying the budget based technique and the DRA onto the five state machine as

117

www.manaraa.com

well as the infinite state problem. We can also extend the power down problem to a distributed

system or to a multiple machine or multicore environment as well. In a distributed system, there

are often times when a node is in some idle state or spinlocking and so putting the node into a lower

power state or some sleep state can be beneficial. We can apply these problems to a multi threaded

environments since they are widely used in web development and smart phone development and

thus investigating these problems in multicore and/or in a multi threaded environment can lead

to favorable results, since multi-threaded and multicore environments can spend time busy waiting

for an event to occur and thus the power down problem is directly applicable in this scenario for

example when a thread is waiting long and putting the thread to sleep after limited activity can also

lead to favorable results. The power down problem is an applicable problem in many areas, even

beyond the area of information technology, and we seek to gain a great deal of understanding of this

problem and how it can be used in many areas of study.

118

www.manaraa.com

Bibliography

[1] https://msdn.microsoft.com/en-us/library/windows/desktop/aa373229(v=vs.85).aspx, 2016.

[2] https://support.apple.com/en-us/HT201714, 2016.

[3] Yuvraj Agarwal, Steve Hodges, Ranveer Chandra, James Scott, Paramvir Bahl, and Rajesh

Gupta. Somniloquy: Augmenting network interfaces to reduce pc energy usage. In Proceedings

of the 6th USENIX Symposium on Networked Systems Design and Implementation, NSDI’09,

pages 365–380, Berkeley, CA, USA, 2009. USENIX Association.

[4] Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta. Sleepserver: A software-only approach for

reducing the energy consumption of pcs within enterprise environments. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference, USENIXATC’10, pages

22–22, Berkeley, CA, USA, 2010. USENIX Association.

[5] Susanne Albers. Online Algorithms, pages 143–164. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2006.

[6] Susanne Albers. Energy-efficient algorithms. Communications Of The ACM, 53:86–96, 2010.

[7] C. Anderson and A. R. Karlin. Two adaptive hybrid cache coherency protocols. In High-

Performance Computer Architecture, 1996. Proceedings., Second International Symposium on,

pages 303–313, Feb 1996.

[8] J. Andro-Vasko, W. Bein, D. Nyknahad, and H. Ito. Evaluation of online power-down algo-

rithms. In 2015 12th International Conference on Information Technology - New Generations,

pages 473–478, April 2015.

[9] John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal power-down strategies. In IEEE

Symposium on Foundations of Computer Science, pages 530–539. Cambridge University Press,

2004.

[10] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Rosén. On capital investment.

Algorithmica, 25(1):22–36, 1999.

[11] N. Bansal, H. L. Chan, T. W. Lam, and K. L. Lee. Scheduling for speed bounded processors.

In Proc. 35th International Colloquium on Automata, Languages and Programming, pages 409–

420, 2008.

[12] N. Bansal, H. L. Chan, K. Pruhs, and D. Katz. Improved bounds for speed scaling in devices

obeying the cube-root rule. In roc. 36th International Colloqium on Automata, Languages and

Programming, pages 144–155, 2009.

119

www.manaraa.com

[13] L.A. Barroso. The price of performance. ACM Queue 3, 2005.

[14] Wolfgang Bein, Naoki Hatta, Nelson Hernandez-Cons, Hiro Ito, Shoji Kasahara, and Jun Kawa-

hara. An online algorithm optimally self-tuning to congestion for power management problems.

In Proceedings of the 9th International Conference on Approximation and Online Algorithms,

pages 35–48. Springer-Verlag, 2012.

[15] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Syst. J.,

5(2):78–101, June 1966.

[16] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of random-

ization in online algorithms. In Proceedings of the Twenty-second Annual ACM Symposium on

Theory of Computing, STOC ’90, pages 379–386, New York, NY, USA, 1990. ACM.

[17] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techinques for system-level

dynamic power management. IEEE Trans. VLSI Syst., 8:299–316, 2000.

[18] Allan Borodin, Prabhakar Raghavan, Sandy Irani, and Baruch Schieber. Competitive paging

with locality of reference. In Proceedings of the Twenty-third Annual ACM Symposium on

Theory of Computing, STOC ’91, pages 249–259, New York, NY, USA, 1991. ACM.

[19] Joan Boyar, Susan Krarup, and Morten N. Nielsen. Seat reservation allowing seat changes. J.

Algorithms, 52(2):169–192, August 2004.

[20] Marshall Brain. http://www.science.smith.edu/ jcardell/Courses/EGR220/ElecPwr HSW.html.

[21] Eui-Young Chung, L. Benini, A. Bogliolo, Yung-Hsiang Lu, and G. De Micheli. Dynamic power

management for nonstationary service requests. IEEE Transactions on Computers, 51(11):1345–

1361, Nov 2002.

[22] Peter Damaschke. Nearly optimal strategies for special cases of on-line capital investment.

Theoretical Computer Science, 302(1):35 – 44, 2003.

[23] S. Ben David and A. Borodin. A new measure for the study of online algorithms, 2001.

[24] Pierre Delforge. America’s data centers consuming and wasting growing amounts of energy.

National Resources Defense Council, 2015.

[25] S. J. Eggers and R. H. Katz. Evaluating the performance of four snooping cache coherency

protocols. SIGARCH Comput. Archit. News, 17(3):2–15, April 1989.

[26] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid - the new and improved power grid: A

survey. IEEE Communications Surveys Tutorials, 14(4):944–980, Fourth 2012.

[27] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and

Neal E. Young. Competitive paging algorithms. CoRR, cs.DS/0205038, 2002.

[28] X. Han, T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Deadline scheduling and power

management for speed bounded processors. Theoretical Computer Science, 411:3587–3600, 2010.

[29] S. Irani, R. Gupta, and S.K. Shukla. Algorithm for power savings. ACM Transactions on

algorithms, 3, 2007.

120

www.manaraa.com

[30] Sandy Irani, Rajesh Gupta, and Sandeep Shukla. Online strategies for dynamic power manage-

ment in systems with multiple power-saving states. ACM Transactions on Embedded Computing

Systems, 2(3), 2003 2003.

[31] Sandy Irani and Anna R. Karlin. On online computation. In Approximation Algorithms for

NP-Hard Problems, chapter 13, pages 521–564. PWS Publishing Company, 1997.

[32] Sandy Irani and Kirk R. Pruhs. Algorithmic problems in power management. SIGACT News,

36(2):63–76, June 2005.

[33] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dynamic power man-

agement in systems with multiple power-saving states. ACM Trans. Embed. Comput. Syst.,

2(3):325–346, August 2003.

[34] Sandy Irani and Gaurav Singh. An overview of the competitive and adversarial approaches to

designing dynamic power management strategies. IEEE Transactions Very Large Scale Inte-

gration, 13(12), December 2005.

[35] Aman Kansal Jitendra Padhye Jitu Padhye Joshua Reich, Michel Goraczko. Sleepless in seattle

no longer. Technical report, March 2010.

[36] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other

stories about e/(e-1). In Proceedings of the Thirty-third Annual ACM Symposium on Theory of

Computing, STOC ’01, pages 502–509, New York, NY, USA, 2001. ACM.

[37] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies of competitve

spinning for a shared-memory multiprocessor. SIGOPS Oper. Syst. Rev., 25(5):41–55, Septem-

ber 1991.

[38] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive snoopy

caching. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science,

SFCS ’86, pages 244–254, Washington, DC, USA, 1986. IEEE Computer Society.

[39] A.R. Karlin, L.A. McGeogh, and S.S. Owicki. Competitive randomized algorithms for non

uniform problems. Algorithmica 11, pages 542–571, 1994.

[40] Claire Kenyon. Best-fit bin-packing with random order. In Proceedings of the Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’96, pages 359–364, Philadelphia, PA,

USA, 1996. Society for Industrial and Applied Mathematics.

[41] S. Keshav, C. Lund, S. Phillips, N. Reingold, and H. Saran. An empirical evaluation of vir-

tual circuit holding time policies in ip-over-atm networks. IEEE Journal on Selected Areas in

Communications, 13(8):1371–1382, Oct 1995.

[42] Gunjan Kumar and Saswata Shannigrahi. New online algorithm for dynamic spped scaling with

sleep state. Technical report.

[43] Zvi Lotker, Boaz Patt-Shamir, and Dror Rawitz. Rent, lease or buy: Randomized algorithms

for multislope ski rental. CoRR, abs/0802.2832, 2008.

[44] Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for on-line problems.

In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88,

pages 322–333, New York, NY, USA, 1988. ACM.

121

www.manaraa.com

[45] Sergiu Nedevschi, Jaideep Chandrashekar, Junda Liu, Bruce Nordman, Sylvia Ratnasamy, and

Nina Taft. Skilled in the art of being idle: Reducing energy waste in networked systems. In

Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation,

NSDI’09, pages 381–394, Berkeley, CA, USA, 2009. USENIX Association.

[46] Konstantinos Panagiotou and Alexander Souza. On adequate performance measures for paging.

In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC

’06, pages 487–496, New York, NY, USA, 2006. ACM.

[47] S. Phillips and J. Westbrook. Algorithms and Theory Computation Handbook. CRC Press,

1999.

[48] D. Ramanathan, S. Irani, and R. Gupta. Latency effects of system level power management

algorithms. In Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM International Con-

ference on, pages 350–356, Nov 2000.

[49] Nick Reingold, Jeffery Westbrook, and Daniel D. Sleator. Randomized competitive algorithms

for the list update problem. Algorithmica, 11(1):15–32, 1994.

[50] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.

Commun. ACM, 28(2):202–208, February 1985.

[51] F.F. Yao, A.J. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Proc.

36th IEEE Symposium on Foundations of Computer Science, pages 374–382, 1995.

122

www.manaraa.com

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

James Andro-Vasko

Email: androvas@unlv.nevada.edu

Degrees:

Master of Science in Computer Science 2011

University of Nevada Las Vegas

Bachelor of Science in Computer Science 2009

University of Nevada Las Vegas

Dissertation Title: Competitive Power Down Methods In Green Computing

Thesis Examination Committee:

Chairperson, Dr. Wolfgang Bein, Ph.D.

Committee Member, Dr. Lawrence Larmore, Ph.D.

Committee Member, Dr. Ajoy Datta, Ph.D.

Committee Member, Dr. Andreas Setfik, Ph.D.

Graduate Faculty Representative, Dr. Robert Boehm, Ph.D.

123

mailto:androvas@unlv.nevada.edu

